
Find the roots of the equation ${x^2} + 5x - 24 = 0$.
A. 3, 8
B. -3, -8
C. -3, 8
D. -8, 3
Answer
580.5k+ views
Hint: We will first split the middle as to get -24 as the product of those two split terms. Then we will get factors and equate them to 0 to get the desired answer.
Complete step-by-step answer:
We will first know how to use the method of factorization.
Consider that we have an equation $a{x^2} + bx + c = 0$ ……….(1)
Then multiply a and c, we will get: ac
Now, we will find factors of ac such that the linear sum of those factors results in b.
Now, let us try to apply this method on ${x^2} + 5x - 24 = 0$.
Comparing this equation with equation (1), we will see that:-
a = 1, b = 5 and c = -24.
$a \times c = 1 \times ( - 24) = - 24$
Now, let us find all the factors of -24.
Factors = -1 and 24, -2 and 12, -3 and 8, -4 and 6, -6 and 4, -8 and 3, -12 and 2; and -24 and 1.
We see that -3 + 8 = 5.
We can rewrite our polynomial ${x^2} + 5x - 24 = 0$ as ${x^2} - 3x + 8x - 24 = 0$.
Now, taking $x$ common from first two terms and 8 common from the next two terms, we will have:-
$x(x - 3) + 8(x - 3) = 0$
Now, taking $x - 3$ common, we will have:-
$(x - 3)(x + 8) = 0$
We know that if a.b = 0, then either a = 0 or b = 0.
So, either $x - 3 = 0$ or $x + 8 = 0$.
Taking the constants on the right hand side in both equations:-
So, either $x = 3$ or $x = - 8$.
Hence, the roots are 3 and -8.
So, the correct answer is “Option D”.
Note: The student might make the mistake of finding a factor without considering the negative sign and will end up not getting any common factor among it.
There is one more way of doing the same question by using direct formula which says the roots of the equation $a{x^2} + bx + c = 0$ are given by $\dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$.
Complete step-by-step answer:
We will first know how to use the method of factorization.
Consider that we have an equation $a{x^2} + bx + c = 0$ ……….(1)
Then multiply a and c, we will get: ac
Now, we will find factors of ac such that the linear sum of those factors results in b.
Now, let us try to apply this method on ${x^2} + 5x - 24 = 0$.
Comparing this equation with equation (1), we will see that:-
a = 1, b = 5 and c = -24.
$a \times c = 1 \times ( - 24) = - 24$
Now, let us find all the factors of -24.
Factors = -1 and 24, -2 and 12, -3 and 8, -4 and 6, -6 and 4, -8 and 3, -12 and 2; and -24 and 1.
We see that -3 + 8 = 5.
We can rewrite our polynomial ${x^2} + 5x - 24 = 0$ as ${x^2} - 3x + 8x - 24 = 0$.
Now, taking $x$ common from first two terms and 8 common from the next two terms, we will have:-
$x(x - 3) + 8(x - 3) = 0$
Now, taking $x - 3$ common, we will have:-
$(x - 3)(x + 8) = 0$
We know that if a.b = 0, then either a = 0 or b = 0.
So, either $x - 3 = 0$ or $x + 8 = 0$.
Taking the constants on the right hand side in both equations:-
So, either $x = 3$ or $x = - 8$.
Hence, the roots are 3 and -8.
So, the correct answer is “Option D”.
Note: The student might make the mistake of finding a factor without considering the negative sign and will end up not getting any common factor among it.
There is one more way of doing the same question by using direct formula which says the roots of the equation $a{x^2} + bx + c = 0$ are given by $\dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
The shortest day of the year in India

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the missing number in the sequence 259142027 class 10 maths CBSE

