Find the remainder when $7^{21}+7^{22}+7^{23}+7^{24}$ is divided by 25:
$\left(a\right)0$
$\left(b\right)2$
$\left(c\right)4$
$\left(d\right)6$
Answer
279k+ views
Hint: We need to find the remainder obtained when we divide the given sum by 25. For this, we will not calculate the actual value of $7^{21}, 7^{22}$ and so on. We would rather see the remainder obtained when we solve the small powers of 7 and see the remainder. And then we will do multiplication in the power to obtain the remainder for the bigger exponent powers of 7.
Complete step by step answer:
Observe that when we divide 7 by 25, we obtain 7 as the remainder.
If we divide $7^2$ by 25 i.e. dividing 49 by 25, we obtain 24 as the remainder.
Next, if we divide $7^3$ by 25 i.e. 343 by 25, we obtain 18 as the remainder.
Further, if we divide $7^4$ by 25 we get 1 as the remainder.
After this, the cycle will continue the same way i.e. $7^5$ divided by 25 will again give 7 and so on.
So, we have the powers $7^{21}$ which when divided by 25 will obtain 7 as the remainder.
Similarly, $7^{22}$ when divided by 25 will obtain 24 as the remainder.
And, $7^{23}$ which when divided by 25 will obtain 18 as the remainder.
Finally, $7^{24}$ which when divided by 25 will obtain 1 as the remainder.
If we sum up these remainders, we get $7+24+18+1=50$ which when divided by 25 gives 0 as the remainder. Hence the remainder obtained when we divide $7^{21}+7^{22}+7^{23}+7^{24}$ by 25 is 0.
So, the correct answer is “Option a”.
Note: We can also write the expression $7^{21}+7^{22}+7^{23}+7^{24}$ as $7^{21}\left(1+7+7^{2}+7^{3}\right)=7^{21}\left(400\right)$. We know that 400 is divisible by 25. So, the remainder obtained will be 0. So from this trick also, we get the same answer.
Complete step by step answer:
Observe that when we divide 7 by 25, we obtain 7 as the remainder.
If we divide $7^2$ by 25 i.e. dividing 49 by 25, we obtain 24 as the remainder.
Next, if we divide $7^3$ by 25 i.e. 343 by 25, we obtain 18 as the remainder.
Further, if we divide $7^4$ by 25 we get 1 as the remainder.
After this, the cycle will continue the same way i.e. $7^5$ divided by 25 will again give 7 and so on.
So, we have the powers $7^{21}$ which when divided by 25 will obtain 7 as the remainder.
Similarly, $7^{22}$ when divided by 25 will obtain 24 as the remainder.
And, $7^{23}$ which when divided by 25 will obtain 18 as the remainder.
Finally, $7^{24}$ which when divided by 25 will obtain 1 as the remainder.
If we sum up these remainders, we get $7+24+18+1=50$ which when divided by 25 gives 0 as the remainder. Hence the remainder obtained when we divide $7^{21}+7^{22}+7^{23}+7^{24}$ by 25 is 0.
So, the correct answer is “Option a”.
Note: We can also write the expression $7^{21}+7^{22}+7^{23}+7^{24}$ as $7^{21}\left(1+7+7^{2}+7^{3}\right)=7^{21}\left(400\right)$. We know that 400 is divisible by 25. So, the remainder obtained will be 0. So from this trick also, we get the same answer.
Recently Updated Pages
Define absolute refractive index of a medium

Find out what do the algal bloom and redtides sign class 10 biology CBSE

Prove that the function fleft x right xn is continuous class 12 maths CBSE

Find the values of other five trigonometric functions class 10 maths CBSE

Find the values of other five trigonometric ratios class 10 maths CBSE

Find the values of other five trigonometric functions class 10 maths CBSE

Trending doubts
What is 1 divided by 0 class 8 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

What is the past tense of read class 10 english CBSE

What is pollution? How many types of pollution? Define it

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

How many crores make 10 million class 7 maths CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

How fast is 60 miles per hour in kilometres per ho class 10 maths CBSE
