Answer
Verified
391.2k+ views
Hint: We need to find the remainder obtained when we divide the given raised power of 3 by 17. For this, we will not calculate the actual value of $3^{247}$. We would rather see the remainder obtained when we solve the small powers of 3 and see the remainder. And then we will do multiplication in the power to obtain the remainder for the bigger exponent powers of 3. We will also use the concept of “mod”.
Complete step by step answer:
Observe that the following holds true:
$3^6= 17\times 43-2$
Now we dissociate the power of 247 as follows:
$3^{247}=3\times\left(3^6\right)^{41}$
$\implies 3^{247}=3\times\left(17\times43-2\right)^{41}$
Now, see that each of the terms is divisible by 17 except the term $\left(-2\right)^{41}$
So, the ones which are divisible by 17 will get cancelled out and the remainder obtained will be the same as that obtained when $3\times\left(-2\right)^{41}$ is divided by 17. Now, we apply the same trick on this one too. Observe that the following holds true:
$\left(-2\right)^4=16=17-1$
Hence, the following holds true too:
$3\times\left(-2\right)^{41}=3\times -2\times \left(-2\right)^{40}$
$\implies 3\times\left(-2\right)^{41} = 3\times -2\times \left(17-1\right)^{10} $
Now again, the terms are divisible by 17 so they will leave the remainder as 0 except the term $-3\times 2=-6$. Now we just need to know what the remainder will be if we divide –6 by 17. We see that:
$-6=17\times -1+11$
Hence, $-6=11\left(mod17\right)$
Therefore, the remainder obtained will be 11.
So, option $\left(1\right)11$ is correct.
Note: Do not solve the actual value of $3^{247}$ to solve this otherwise you will get stuck. Try to simplify the expression as much as possible. Always make sure that the remainder is not negative because that would be an incorrect answer.
Complete step by step answer:
Observe that the following holds true:
$3^6= 17\times 43-2$
Now we dissociate the power of 247 as follows:
$3^{247}=3\times\left(3^6\right)^{41}$
$\implies 3^{247}=3\times\left(17\times43-2\right)^{41}$
Now, see that each of the terms is divisible by 17 except the term $\left(-2\right)^{41}$
So, the ones which are divisible by 17 will get cancelled out and the remainder obtained will be the same as that obtained when $3\times\left(-2\right)^{41}$ is divided by 17. Now, we apply the same trick on this one too. Observe that the following holds true:
$\left(-2\right)^4=16=17-1$
Hence, the following holds true too:
$3\times\left(-2\right)^{41}=3\times -2\times \left(-2\right)^{40}$
$\implies 3\times\left(-2\right)^{41} = 3\times -2\times \left(17-1\right)^{10} $
Now again, the terms are divisible by 17 so they will leave the remainder as 0 except the term $-3\times 2=-6$. Now we just need to know what the remainder will be if we divide –6 by 17. We see that:
$-6=17\times -1+11$
Hence, $-6=11\left(mod17\right)$
Therefore, the remainder obtained will be 11.
So, option $\left(1\right)11$ is correct.
Note: Do not solve the actual value of $3^{247}$ to solve this otherwise you will get stuck. Try to simplify the expression as much as possible. Always make sure that the remainder is not negative because that would be an incorrect answer.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
10 examples of friction in our daily life
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What is pollution? How many types of pollution? Define it