Answer
Verified
454.8k+ views
Hint: As the points lie on the line segment that joins $(1,3)$ and $(2,7)$, therefore, their slope must have the same value and since their slopes are equal so from this we can easily find out the value of $a$.
Formula used:
Slope of the line $ = \dfrac{{y_2^{} - {y_1}}}{{{x_2} - {x_1}}}$
The section formula $\dfrac{{m{x_2} + n{x_1}}}{{m + n}},\dfrac{{m{y_2} + n{y_1}}}{{m + n}}$
Complete step by step answer:
We have to find out the slope of the line joining the points $(1,3)$ and $(2,7)$ by applying the slope formula.
Here the vertices are
$\left( {{x_1},{y_1}} \right) = \left( {1,3} \right)$
$\left( {{x_2},{y_2}} \right) = \left( {2,7} \right)$
Therefore slope of the line $ = \dfrac{{y_2^{} - {y_1}}}{{{x_2} - {x_1}}}$$ = \dfrac{{7 - 3}}{{2 - 1}}$
On subtracting we get,
$ = 4$
Hence the slope of the line is $4$.
Since the slope will be same for both \[\left( {\dfrac{{5 + a}}{7},\dfrac{{6a + 3}}{7}} \right)\] and $(1,3)$.
Here the vertices are
$\left( {{x_1},{y_1}} \right) = \left( {1,3} \right)$
$\left( {{x_2},{y_2}} \right) = \left( {\dfrac{{5 + a}}{7},\dfrac{{6a + 3}}{7}} \right)$
Now using the formula for slope we get,
\[\Rightarrow \dfrac{{\dfrac{{6a + 3}}{7} - 3}}{{\dfrac{{5 + a}}{7} - 1}} = 4\]
By doing cross-multiplication we get
\[\Rightarrow \dfrac{{6a + 3}}{7} - 3 = 4\left( {\dfrac{{5 + a}}{7} - 1} \right)\]
By doing L.C.M we get
$\Rightarrow \dfrac{{6a + 3 - 21}}{7} = 4\left( {\dfrac{{5 + a - 7}}{7}} \right)$
Let us multiply the terms in RHS we get,
$\Rightarrow \dfrac{{6a + 3 - 21}}{7} = \dfrac{{20 + 4a - 28}}{7}$
Now $7$gets cancelled from both the sides and we get-
$\Rightarrow 6a + 3 - 21 = 20 + 4a - 28$
By solving it we get,
$\Rightarrow 2a = 10$
$\Rightarrow a = 5$
Thus the point \[\left( {\dfrac{{5 + a}}{7},\dfrac{{6a + 3}}{7}} \right)\]
We substitute the value of a becomes $\left( {\dfrac{{5 + 5}}{7},\dfrac{{6x5 + 3}}{7}} \right)$
On some simplification we get,
$ = \left( {\dfrac{{10}}{7},\dfrac{{33}}{7}} \right)$
Now we have to apply the section formula $\left( {\dfrac{{m{x_2} + n{x_1}}}{{m + n}},\dfrac{{m{y_2} + n{y_1}}}{{m + n}}} \right)$ to know the coordinates of the points which divides a line in two parts in the ratio of \[m:n\].
Therefore we can write that the coordinates are
Here the vertices are
$\left( {{x_1},{y_1}} \right) = \left( {1,3} \right)$
$\Rightarrow \left( {{x_2},{y_2}} \right) = \left( {2,7} \right)$
$\Rightarrow \left( {\dfrac{{2m + n}}{{m + n}},\dfrac{{7m + 3n}}{{m + n}}} \right) = \left( {\dfrac{{10}}{7},\dfrac{{33}}{7}} \right)$
So we can write the first term,
$\Rightarrow \dfrac{{2m + n}}{{m + n}} = \dfrac{{10}}{7}$
By doing cross-multiplication we get
$\Rightarrow 14m + 7n = 10m + 10n$
Now the \[m\] as LHS and \[n\] as RHS we get-
$\Rightarrow 4m = 3n$
So, $\dfrac{m}{n} = \dfrac{3}{4}$
Thus, the required ratio is $3:4$ and the value of $a$ is $5$.
Note:
While solving this question we need to keep in mind formulas related to a straight line in coordinate geometry and many of us make mistakes in this type of calculation.
The basic formula for finding out the slope of the line $ = \dfrac{{y_2^{} - {y_1}}}{{{x_2} - {x_1}}}$
And another important formula which you require in solving this question is$\dfrac{{m{x_2} + n{x_1}}}{{m + n}},\dfrac{{m{y_2} + n{y_1}}}{{m + n}}$
Try to remember this formula otherwise the sum will be wrong.
Formula used:
Slope of the line $ = \dfrac{{y_2^{} - {y_1}}}{{{x_2} - {x_1}}}$
The section formula $\dfrac{{m{x_2} + n{x_1}}}{{m + n}},\dfrac{{m{y_2} + n{y_1}}}{{m + n}}$
Complete step by step answer:
We have to find out the slope of the line joining the points $(1,3)$ and $(2,7)$ by applying the slope formula.
Here the vertices are
$\left( {{x_1},{y_1}} \right) = \left( {1,3} \right)$
$\left( {{x_2},{y_2}} \right) = \left( {2,7} \right)$
Therefore slope of the line $ = \dfrac{{y_2^{} - {y_1}}}{{{x_2} - {x_1}}}$$ = \dfrac{{7 - 3}}{{2 - 1}}$
On subtracting we get,
$ = 4$
Hence the slope of the line is $4$.
Since the slope will be same for both \[\left( {\dfrac{{5 + a}}{7},\dfrac{{6a + 3}}{7}} \right)\] and $(1,3)$.
Here the vertices are
$\left( {{x_1},{y_1}} \right) = \left( {1,3} \right)$
$\left( {{x_2},{y_2}} \right) = \left( {\dfrac{{5 + a}}{7},\dfrac{{6a + 3}}{7}} \right)$
Now using the formula for slope we get,
\[\Rightarrow \dfrac{{\dfrac{{6a + 3}}{7} - 3}}{{\dfrac{{5 + a}}{7} - 1}} = 4\]
By doing cross-multiplication we get
\[\Rightarrow \dfrac{{6a + 3}}{7} - 3 = 4\left( {\dfrac{{5 + a}}{7} - 1} \right)\]
By doing L.C.M we get
$\Rightarrow \dfrac{{6a + 3 - 21}}{7} = 4\left( {\dfrac{{5 + a - 7}}{7}} \right)$
Let us multiply the terms in RHS we get,
$\Rightarrow \dfrac{{6a + 3 - 21}}{7} = \dfrac{{20 + 4a - 28}}{7}$
Now $7$gets cancelled from both the sides and we get-
$\Rightarrow 6a + 3 - 21 = 20 + 4a - 28$
By solving it we get,
$\Rightarrow 2a = 10$
$\Rightarrow a = 5$
Thus the point \[\left( {\dfrac{{5 + a}}{7},\dfrac{{6a + 3}}{7}} \right)\]
We substitute the value of a becomes $\left( {\dfrac{{5 + 5}}{7},\dfrac{{6x5 + 3}}{7}} \right)$
On some simplification we get,
$ = \left( {\dfrac{{10}}{7},\dfrac{{33}}{7}} \right)$
Now we have to apply the section formula $\left( {\dfrac{{m{x_2} + n{x_1}}}{{m + n}},\dfrac{{m{y_2} + n{y_1}}}{{m + n}}} \right)$ to know the coordinates of the points which divides a line in two parts in the ratio of \[m:n\].
Therefore we can write that the coordinates are
Here the vertices are
$\left( {{x_1},{y_1}} \right) = \left( {1,3} \right)$
$\Rightarrow \left( {{x_2},{y_2}} \right) = \left( {2,7} \right)$
$\Rightarrow \left( {\dfrac{{2m + n}}{{m + n}},\dfrac{{7m + 3n}}{{m + n}}} \right) = \left( {\dfrac{{10}}{7},\dfrac{{33}}{7}} \right)$
So we can write the first term,
$\Rightarrow \dfrac{{2m + n}}{{m + n}} = \dfrac{{10}}{7}$
By doing cross-multiplication we get
$\Rightarrow 14m + 7n = 10m + 10n$
Now the \[m\] as LHS and \[n\] as RHS we get-
$\Rightarrow 4m = 3n$
So, $\dfrac{m}{n} = \dfrac{3}{4}$
Thus, the required ratio is $3:4$ and the value of $a$ is $5$.
Note:
While solving this question we need to keep in mind formulas related to a straight line in coordinate geometry and many of us make mistakes in this type of calculation.
The basic formula for finding out the slope of the line $ = \dfrac{{y_2^{} - {y_1}}}{{{x_2} - {x_1}}}$
And another important formula which you require in solving this question is$\dfrac{{m{x_2} + n{x_1}}}{{m + n}},\dfrac{{m{y_2} + n{y_1}}}{{m + n}}$
Try to remember this formula otherwise the sum will be wrong.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Discuss the main reasons for poverty in India
A Paragraph on Pollution in about 100-150 Words
Why is monsoon considered a unifying bond class 10 social science CBSE
What makes elections in India democratic class 11 social science CBSE
What does the term Genocidal War refer to class 12 social science CBSE
A weight hangs freely from the end of a spring A boy class 11 physics CBSE