# Find the ratio compounded of

$(1)$ The ratio 2a, 3b and the duplicate of $9{b^2}:ab$

$(2)$ The sub duplicate ratio of 64: 9, and the ratio 27: 56

$(3)$ The duplicate ratio of $\dfrac{{2a}}{b}:\dfrac{{\sqrt C {a^2}}}{{{b^2}}}$, and the ratio 3ax: 2by

Last updated date: 17th Mar 2023

•

Total views: 304.2k

•

Views today: 5.83k

Answer

Verified

304.2k+ views

Hint – In this question we have to deal with terms like duplicate, sub duplicate and we need to take out ratio compounded of ratio and duplicate. Sub duplicate ratio and ratio and duplicate ratio and ratio, so use the basic definition of duplicate, sub-duplicate directly along with the basic formula. Implementation of these two will get you to the answer.

Complete step-by-step answer:

Let us assume two ratios $\left( {x:y} \right){\text{ & }}\left( {p:q} \right)$

Duplicate of the ratio $\left( {p:q} \right)$ is $\left( {{p^2}:{q^2}} \right)$

So, the compound of $\left( {x:y} \right)$ and duplicate of $\left( {p:q} \right)$is $ \Rightarrow \left( {x \times {p^2}} \right):\left( {y \times {q^2}} \right)$

Now as we know that the sub duplicate of the ratio $\left( {p:q} \right)$ is $\left( {\sqrt p :\sqrt q } \right)$

So, the compound of $\left( {x:y} \right)$ and sub duplicate of $\left( {p:q} \right)$ is $ \Rightarrow \left( {x \times \sqrt p } \right):\left( {y \times \sqrt q } \right)$

So, use these properties in the given question we have,

$\left( 1 \right)$ Duplicate of the ratio $\left( {9{b^2}:ab} \right)$ is $\left( {81{b^4}:{a^2}{b^2}} \right)$

So, the compound of $\left( {2a:3b} \right)$ and duplicate of $\left( {9{b^2}:ab} \right)$is $ \Rightarrow \left( {2a \times 81{b^4}} \right):\left( {3b \times {a^2}{b^2}} \right)$

Now simplify the above ratio we have,

$ \Rightarrow \left( {2a \times 81{b^4}} \right):\left( {3b \times {a^2}{b^2}} \right)$

Divide by $3a{b^3}$ we have,

$ = 54b:a$

$\left( 2 \right)$ The sub duplicate of the ratio $\left( {64:9} \right)$ is \[\left( {\sqrt {64} :\sqrt 9 } \right) = \left( {8:3} \right)\]

So, the compound of $\left( {27:56} \right)$ and sub duplicate of $\left( {8:3} \right)$is $ \Rightarrow \left( {27 \times 8} \right):\left( {56 \times 3} \right)$

Now divide by 24 we have

$ \Rightarrow \left( {27 \times 8} \right):\left( {56 \times 3} \right) = 9:7$

$\left( 3 \right)$ Duplicate of the ratio $\left( {\dfrac{{2a}}{b}:\dfrac{{\sqrt c {a^2}}}{{{b^2}}}} \right)$ is $\left( {\dfrac{{4{a^2}}}{{{b^2}}}:\dfrac{{c{a^4}}}{{{b^4}}}} \right)$

So, the compound of $\left( {3ax:2by} \right)$ and duplicate of $\left( {\dfrac{{2a}}{b}:\dfrac{{\sqrt c {a^2}}}{{{b^2}}}} \right)$is $ \Rightarrow \left( {3ax \times \dfrac{{4{a^2}}}{{{b^2}}}} \right):\left( {2by \times \dfrac{{c{a^4}}}{{{b^4}}}} \right)$

Now simplify the above ratio we have,

$ \Rightarrow \left( {3ax \times \dfrac{{4{a^2}}}{{{b^2}}}} \right):\left( {2by \times \dfrac{{c{a^4}}}{{{b^4}}}} \right) = \left( {12x \times \dfrac{{{a^3}}}{{{b^2}}}} \right):\left( {2y \times \dfrac{{c{a^4}}}{{{b^3}}}} \right)$

Divide by $\dfrac{{2{a^3}}}{{{b^2}}}$ we have,

$ = 6x:\dfrac{{yac}}{b} = 6bx:acy$

So, these are the required answers.

Note – Whenever we face such types of problems the key point that we need to have in our mind is that these all are basic definitions along with direct based questions. So having a good understanding of this direct concept helps you solve problems of this kind.

Complete step-by-step answer:

Let us assume two ratios $\left( {x:y} \right){\text{ & }}\left( {p:q} \right)$

Duplicate of the ratio $\left( {p:q} \right)$ is $\left( {{p^2}:{q^2}} \right)$

So, the compound of $\left( {x:y} \right)$ and duplicate of $\left( {p:q} \right)$is $ \Rightarrow \left( {x \times {p^2}} \right):\left( {y \times {q^2}} \right)$

Now as we know that the sub duplicate of the ratio $\left( {p:q} \right)$ is $\left( {\sqrt p :\sqrt q } \right)$

So, the compound of $\left( {x:y} \right)$ and sub duplicate of $\left( {p:q} \right)$ is $ \Rightarrow \left( {x \times \sqrt p } \right):\left( {y \times \sqrt q } \right)$

So, use these properties in the given question we have,

$\left( 1 \right)$ Duplicate of the ratio $\left( {9{b^2}:ab} \right)$ is $\left( {81{b^4}:{a^2}{b^2}} \right)$

So, the compound of $\left( {2a:3b} \right)$ and duplicate of $\left( {9{b^2}:ab} \right)$is $ \Rightarrow \left( {2a \times 81{b^4}} \right):\left( {3b \times {a^2}{b^2}} \right)$

Now simplify the above ratio we have,

$ \Rightarrow \left( {2a \times 81{b^4}} \right):\left( {3b \times {a^2}{b^2}} \right)$

Divide by $3a{b^3}$ we have,

$ = 54b:a$

$\left( 2 \right)$ The sub duplicate of the ratio $\left( {64:9} \right)$ is \[\left( {\sqrt {64} :\sqrt 9 } \right) = \left( {8:3} \right)\]

So, the compound of $\left( {27:56} \right)$ and sub duplicate of $\left( {8:3} \right)$is $ \Rightarrow \left( {27 \times 8} \right):\left( {56 \times 3} \right)$

Now divide by 24 we have

$ \Rightarrow \left( {27 \times 8} \right):\left( {56 \times 3} \right) = 9:7$

$\left( 3 \right)$ Duplicate of the ratio $\left( {\dfrac{{2a}}{b}:\dfrac{{\sqrt c {a^2}}}{{{b^2}}}} \right)$ is $\left( {\dfrac{{4{a^2}}}{{{b^2}}}:\dfrac{{c{a^4}}}{{{b^4}}}} \right)$

So, the compound of $\left( {3ax:2by} \right)$ and duplicate of $\left( {\dfrac{{2a}}{b}:\dfrac{{\sqrt c {a^2}}}{{{b^2}}}} \right)$is $ \Rightarrow \left( {3ax \times \dfrac{{4{a^2}}}{{{b^2}}}} \right):\left( {2by \times \dfrac{{c{a^4}}}{{{b^4}}}} \right)$

Now simplify the above ratio we have,

$ \Rightarrow \left( {3ax \times \dfrac{{4{a^2}}}{{{b^2}}}} \right):\left( {2by \times \dfrac{{c{a^4}}}{{{b^4}}}} \right) = \left( {12x \times \dfrac{{{a^3}}}{{{b^2}}}} \right):\left( {2y \times \dfrac{{c{a^4}}}{{{b^3}}}} \right)$

Divide by $\dfrac{{2{a^3}}}{{{b^2}}}$ we have,

$ = 6x:\dfrac{{yac}}{b} = 6bx:acy$

So, these are the required answers.

Note – Whenever we face such types of problems the key point that we need to have in our mind is that these all are basic definitions along with direct based questions. So having a good understanding of this direct concept helps you solve problems of this kind.

Recently Updated Pages

If a spring has a period T and is cut into the n equal class 11 physics CBSE

A planet moves around the sun in nearly circular orbit class 11 physics CBSE

In any triangle AB2 BC4 CA3 and D is the midpoint of class 11 maths JEE_Main

In a Delta ABC 2asin dfracAB+C2 is equal to IIT Screening class 11 maths JEE_Main

If in aDelta ABCangle A 45circ angle C 60circ then class 11 maths JEE_Main

If in a triangle rmABC side a sqrt 3 + 1rmcm and angle class 11 maths JEE_Main

Trending doubts

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Epipetalous and syngenesious stamens occur in aSolanaceae class 11 biology CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

A Short Paragraph on our Country India