Find the product of\[\left( m+n \right)\left( {{m}^{2}}-mn+{{n}^{2}} \right)\].
Answer
Verified
506.4k+ views
Hint:Given is an algebraic expression. Open the brackets and simplify the expression. You will get the product of the expression.
Complete step-by-step answer:
The given expression is an algebraic expression built up from integer constants, variables and the algebraic operations (addition, subtraction, multiplication, division and exponentiation by an exponent) that is a rational number.
Given, \[\left( m+n \right)\left( {{m}^{2}}-mn+{{n}^{2}} \right)\].
Opening the brackets and simplifying the expression,
\[\begin{align}
& \left( m+n \right)\left( {{m}^{2}}-mn+{{n}^{2}} \right)=m\left( {{m}^{2}}-mn+{{n}^{2}} \right)+n\left( {{m}^{2}}-mn+{{n}^{2}} \right) \\
& =\left[ m\times {{m}^{2}}-m\times \left( mn \right)+m\times {{n}^{2}} \right]+\left[ n\times {{m}^{2}}-n\times \left( mn \right)+n\times {{n}^{2}} \right] \\
& =\left[ {{m}^{3}}-{{m}^{2}}n+m{{n}^{2}} \right]+\left[ n{{m}^{2}}-m{{n}^{2}}+{{n}^{3}} \right] \\
\end{align}\]
Opening the brackets and simplifying it,
\[={{m}^{3}}-{{m}^{2}}n+m{{n}^{2}}+n{{m}^{2}}-m{{n}^{2}}+{{n}^{3}}\]
Cancel out similar terms \[m{{n}^{2}}\]and \[{{m}^{2}}n\].
\[={{m}^{3}}+{{n}^{3}}\]
\[\therefore \left( m+n \right)\left( {{m}^{2}}-mn+{{n}^{2}} \right)={{m}^{3}}+{{n}^{3}}\]
Hence, we have found the product of the algebraic expression.
Note:
When removing the brackets and multiplying them be careful as not to mix up the sign and the terms m and n. If changing a sign or mistakenly putting n instead of m would change the entire answer.
Suppose we have an expression\[{{a}^{3}}+{{b}^{3}}\].
The expanded from of\[{{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)\].
which is similar to our question\[\left( m+n \right)\left( {{m}^{2}}-mn+{{n}^{2}} \right)\].
So without opening brackets and expanding it we guess the answer as\[{{m}^{3}}+{{n}^{3}}\].
Complete step-by-step answer:
The given expression is an algebraic expression built up from integer constants, variables and the algebraic operations (addition, subtraction, multiplication, division and exponentiation by an exponent) that is a rational number.
Given, \[\left( m+n \right)\left( {{m}^{2}}-mn+{{n}^{2}} \right)\].
Opening the brackets and simplifying the expression,
\[\begin{align}
& \left( m+n \right)\left( {{m}^{2}}-mn+{{n}^{2}} \right)=m\left( {{m}^{2}}-mn+{{n}^{2}} \right)+n\left( {{m}^{2}}-mn+{{n}^{2}} \right) \\
& =\left[ m\times {{m}^{2}}-m\times \left( mn \right)+m\times {{n}^{2}} \right]+\left[ n\times {{m}^{2}}-n\times \left( mn \right)+n\times {{n}^{2}} \right] \\
& =\left[ {{m}^{3}}-{{m}^{2}}n+m{{n}^{2}} \right]+\left[ n{{m}^{2}}-m{{n}^{2}}+{{n}^{3}} \right] \\
\end{align}\]
Opening the brackets and simplifying it,
\[={{m}^{3}}-{{m}^{2}}n+m{{n}^{2}}+n{{m}^{2}}-m{{n}^{2}}+{{n}^{3}}\]
Cancel out similar terms \[m{{n}^{2}}\]and \[{{m}^{2}}n\].
\[={{m}^{3}}+{{n}^{3}}\]
\[\therefore \left( m+n \right)\left( {{m}^{2}}-mn+{{n}^{2}} \right)={{m}^{3}}+{{n}^{3}}\]
Hence, we have found the product of the algebraic expression.
Note:
When removing the brackets and multiplying them be careful as not to mix up the sign and the terms m and n. If changing a sign or mistakenly putting n instead of m would change the entire answer.
Suppose we have an expression\[{{a}^{3}}+{{b}^{3}}\].
The expanded from of\[{{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)\].
which is similar to our question\[\left( m+n \right)\left( {{m}^{2}}-mn+{{n}^{2}} \right)\].
So without opening brackets and expanding it we guess the answer as\[{{m}^{3}}+{{n}^{3}}\].
Recently Updated Pages
A uniform rod of length l and mass m is free to rotate class 10 physics CBSE
Solve the following pairs of linear equations by elimination class 10 maths CBSE
What could be the possible ones digits of the square class 10 maths CBSE
Where was the Great Bath found A Harappa B Mohenjodaro class 10 social science CBSE
PQ is a tangent to a circle with centre O at the point class 10 maths CBSE
The measures of two adjacent sides of a parallelogram class 10 maths CBSE
Trending doubts
Imagine that you have the opportunity to interview class 10 english CBSE
Find the area of the minor segment of a circle of radius class 10 maths CBSE
Fill the blanks with proper collective nouns 1 A of class 10 english CBSE
Frogs can live both on land and in water name the adaptations class 10 biology CBSE
Fill in the blank One of the students absent yesterday class 10 english CBSE
Write a letter to the Principal of your school requesting class 10 english CBSE