Answer
Verified
465.6k+ views
Hint: In order to solve this problem, we need to find the distance from the first point to a certain point on the y axis and from the second point to the same point. And as the distance between them is the same we can equate them by using the distance formula. The distance formula says that $\text{Distance}=\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}}$ where ${{x}_{2}},{{x}_{1}}$ are the x coordinates and ${{y}_{1}},{{y}_{2}}$ are the y coordinates.
Complete step-by-step solution:
We need to point on the y-axis which is equidistant to point A and B
Let the point A be A (5, -2).
Let point B be B (-3,2).
Let the point on the y-axis be P.
We know the points lie on the y-axis.
All the points that lie on the y-axis have the x coordinate equal to zero.
So, the point P becomes P (0, y).
We must know the distance formula to find the distance between PA and PB.
The distance formula is given by $\text{Distance}=\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}}$ .
Let’s start by finding the distance between points P and A.
Let point P (0, y) be $P\left( {{x}_{1}},{{y}_{1}} \right)$ .
And point A (5, -2) be $A\left( {{x}_{2}},{{y}_{2}} \right)$ .
Substituting the values, we get,
$PA=\sqrt{{{\left( -2-y \right)}^{2}}+{{\left( 5-0 \right)}^{2}}}$
Solving this equation, we get,
$PA=\sqrt{{{\left( -2-y \right)}^{2}}+25}............(i)$
Let’s find the distance between points P and B.
Let point P (0, y) be $P\left( {{x}_{1}},{{y}_{1}} \right)$ .
And point B (-3, 2) be $B\left( {{x}_{2}},{{y}_{2}} \right)$ .
Substituting the values, we get,
$PB=\sqrt{{{\left( 2-y \right)}^{2}}+{{\left( -3-0 \right)}^{2}}}$
Solving this equation, we get,
$PB=\sqrt{{{\left( 2-y \right)}^{2}}+9}............(ii)$
We know that point P is at the same distance from point A and B, hence PA = PB.
Equating (i) and (ii), we get,
\[\sqrt{{{\left( -2-y \right)}^{2}}+25}=\sqrt{{{\left( 2-y \right)}^{2}}+9}\]
Squaring on both sides we get,
\[{{\left( -2-y \right)}^{2}}+25={{\left( 2-y \right)}^{2}}+9\]
Using the identity that ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$ , we get,
\[{{\left( -2 \right)}^{2}}+{{\left( -y \right)}^{2}}+\left( 2\times -y\times -2 \right)+25={{2}^{2}}+{{\left( -y \right)}^{2}}+\left( 2\times -y\times 2 \right)+9\]
Solving for y we get,
\[ {{\left( -2 \right)}^{2}}+{{\left( -y \right)}^{2}}+\left( 2\times -y\times -2 \right)+25={{2}^{2}}+{{\left( -y \right)}^{2}}+\left( 2\times -y\times 2 \right)+9 \\
\Rightarrow 4+{{y}^{2}}+4y+25=4+{{y}^{2}}-4y+9 \\
\Rightarrow 8y=9-25 \\
\Rightarrow 8y=-16 \\
\Rightarrow y=\dfrac{-16}{8}=-2 \]
Hence, the point P is P (0, -2).
Note: All the points on the y-axis have their x coordinate zero. This is because as the x-axis passes through the origin it interests the x-axis at x coordinate = 0. Hence, its all the points have x coordinates zero. In the distance formula, we can choose any point first because the difference between them will always be squared and the square of any number is always positive.
Complete step-by-step solution:
We need to point on the y-axis which is equidistant to point A and B
Let the point A be A (5, -2).
Let point B be B (-3,2).
Let the point on the y-axis be P.
We know the points lie on the y-axis.
All the points that lie on the y-axis have the x coordinate equal to zero.
So, the point P becomes P (0, y).
We must know the distance formula to find the distance between PA and PB.
The distance formula is given by $\text{Distance}=\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}}$ .
Let’s start by finding the distance between points P and A.
Let point P (0, y) be $P\left( {{x}_{1}},{{y}_{1}} \right)$ .
And point A (5, -2) be $A\left( {{x}_{2}},{{y}_{2}} \right)$ .
Substituting the values, we get,
$PA=\sqrt{{{\left( -2-y \right)}^{2}}+{{\left( 5-0 \right)}^{2}}}$
Solving this equation, we get,
$PA=\sqrt{{{\left( -2-y \right)}^{2}}+25}............(i)$
Let’s find the distance between points P and B.
Let point P (0, y) be $P\left( {{x}_{1}},{{y}_{1}} \right)$ .
And point B (-3, 2) be $B\left( {{x}_{2}},{{y}_{2}} \right)$ .
Substituting the values, we get,
$PB=\sqrt{{{\left( 2-y \right)}^{2}}+{{\left( -3-0 \right)}^{2}}}$
Solving this equation, we get,
$PB=\sqrt{{{\left( 2-y \right)}^{2}}+9}............(ii)$
We know that point P is at the same distance from point A and B, hence PA = PB.
Equating (i) and (ii), we get,
\[\sqrt{{{\left( -2-y \right)}^{2}}+25}=\sqrt{{{\left( 2-y \right)}^{2}}+9}\]
Squaring on both sides we get,
\[{{\left( -2-y \right)}^{2}}+25={{\left( 2-y \right)}^{2}}+9\]
Using the identity that ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$ , we get,
\[{{\left( -2 \right)}^{2}}+{{\left( -y \right)}^{2}}+\left( 2\times -y\times -2 \right)+25={{2}^{2}}+{{\left( -y \right)}^{2}}+\left( 2\times -y\times 2 \right)+9\]
Solving for y we get,
\[ {{\left( -2 \right)}^{2}}+{{\left( -y \right)}^{2}}+\left( 2\times -y\times -2 \right)+25={{2}^{2}}+{{\left( -y \right)}^{2}}+\left( 2\times -y\times 2 \right)+9 \\
\Rightarrow 4+{{y}^{2}}+4y+25=4+{{y}^{2}}-4y+9 \\
\Rightarrow 8y=9-25 \\
\Rightarrow 8y=-16 \\
\Rightarrow y=\dfrac{-16}{8}=-2 \]
Hence, the point P is P (0, -2).
Note: All the points on the y-axis have their x coordinate zero. This is because as the x-axis passes through the origin it interests the x-axis at x coordinate = 0. Hence, its all the points have x coordinates zero. In the distance formula, we can choose any point first because the difference between them will always be squared and the square of any number is always positive.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Discuss the main reasons for poverty in India
A Paragraph on Pollution in about 100-150 Words
Why is monsoon considered a unifying bond class 10 social science CBSE
What makes elections in India democratic class 11 social science CBSE
What does the term Genocidal War refer to class 12 social science CBSE
A weight hangs freely from the end of a spring A boy class 11 physics CBSE