
Find the point on the \[3x - 4y - 1{\text{ }} = 0\], where are at a distance of 5 units from the point (3, 2)
Answer
505.8k+ views
Hint: A straight line is a single line with no bending. And it extends from the minus infinite to plus infinite has no curvature is called a straight line and the standard form of the line is given below
\[y = mx + p\]
Where the m is known as the slope and the p is intercepted at the y axis which is matched with the given line equation. In this question, we have to find the point on the line having the distance of the five-unit from the given point.
Complete step-by-step solution:
Step 1:
Consider
First we write the given equation and point and distance D
\[3x - 4y - 1{\text{ }} = 0\]
\[D = 5\] From the given point to the point on the line \[\left( {u,v} \right)\] assume now D is given by the below distance formula so
\[D = \sqrt {{{\left( {u - {x_1}} \right)}^2} + {{\left( {v - {y_1}} \right)}^2}} \\
\text{We have} \\
\Rightarrow \left( {{x_1},{y_1}} \right) = (3,2)\,\,and\,\,D = 5\,\,put\,\,the\,\,value \\
\Rightarrow D = \sqrt {{{\left( {u - {x_1}} \right)}^2} + {{\left( {v - {y_1}} \right)}^2}} \\
\Rightarrow {D^2} = {\left( {u - {x_1}} \right)^2} + {\left( {v - {y_1}} \right)^2} \\
\Rightarrow {5^2} = {\left( {u - 3} \right)^2} + {\left( {v - 2} \right)^2} \\
\Rightarrow 25 = {\left( {u - 3} \right)^2} + {\left( {v - 2} \right)^2} \\
\text{now from the equation} 3x - 4y = 1 \text{satisfy the point (u,v) then} \\
\Rightarrow 3u - 4v = 1\, \\
\Rightarrow 3u = 1 + 4v\, \\
\Rightarrow u = \dfrac{{1 + 4v}}{3} \]
\[\text{Now put the value into} \\
\Rightarrow 25 = {\left( {u - 3} \right)^2} + {\left( {v - 2} \right)^2} \\
\Rightarrow 25 = {\left( {\dfrac{{1 + 4v}}{3}\, - 3} \right)^2} + {\left( {v - 2} \right)^2} \\
\Rightarrow 25 = {\left( {\dfrac{{1 + 4v - 9}}{3}} \right)^2} + {\left( {v - 2} \right)^2} \\
\Rightarrow 25 = {\left( {\dfrac{{4v - 8}}{3}} \right)^2} + {\left( {v - 2} \right)^2} \\
\Rightarrow 25 = \left( {\dfrac{{16{v^2} + 64 - 64v}}{9}} \right) + \left( {{v^2} + 4 - 4v} \right) \\
\Rightarrow 25 \times 9 = \left( {16{v^2} + 64 - 64v} \right) + \left( {9{v^2} + 36 - 36v} \right) \\
\Rightarrow 225 = \left( {25{v^2} + 100 - 100v} \right) \\
\Rightarrow 25{v^2} + 100 - 100v = 225 \\
\Rightarrow 25{v^2} + 100 - 225 - 100v = 0 \\
\Rightarrow 25{v^2} - 125 - 100v = 0 \\
\Rightarrow 25\left( {{v^2} - 5 - 4v} \right) = 0 \\
\Rightarrow {v^2} - 4v - 5 = 0 \\
\Rightarrow {v^2} - 5v + v - 5 = 0 \\
\Rightarrow v\left( {v - 5} \right) + 1\left( {v - 5} \right) = 0 \\
\Rightarrow \left( {v + 1} \right)\left( {v - 5} \right) = 0 \\
or \\
\Rightarrow v = - 1\,\,or\,\,v = 5 \\
\text{now put it into the} \\
\Rightarrow u = \dfrac{{1 + 4v}}{3}\, \\
\text{then},v = - 1\,\, \\
\Rightarrow u = \dfrac{{1 + 4\left( { - 1\,} \right)}}{3}\, = \dfrac{{1 - 4}}{3}\, = \dfrac{{ - 3}}{3} = - 1 \\
u = - 1 \\
\text{ similarly for}\,v = 5 \\
\Rightarrow u = \dfrac{{1 + 4v}}{3} \\
then,v = 5\,\, \\
\Rightarrow u = \dfrac{{1 + 4\left( {5\,} \right)}}{3}\, = \dfrac{{1 + 20}}{3}\, = \dfrac{{21}}{3} = 7 \\
\Rightarrow u = 7 \\ \]
Now we got the pair of the points $\left( {u,v} \right) = \left( {7,5} \right)$ or $\left( {u,v} \right) = \left( { - 1, - 1} \right) $
Which is on the given line and our desired answer or point (7, 5), or (-1,-1)
Note: The straight line question is very straight forward we have just followed the instruction given by the question and we got the points on the line which are (7, 5), or (-1,-1), and both points on line having the distance from the point (3, 2) are 5 unite and can be cross-checked with the help of the distance formula
\[y = mx + p\]
Where the m is known as the slope and the p is intercepted at the y axis which is matched with the given line equation. In this question, we have to find the point on the line having the distance of the five-unit from the given point.
Complete step-by-step solution:
Step 1:
Consider
First we write the given equation and point and distance D
\[3x - 4y - 1{\text{ }} = 0\]
\[D = 5\] From the given point to the point on the line \[\left( {u,v} \right)\] assume now D is given by the below distance formula so
\[D = \sqrt {{{\left( {u - {x_1}} \right)}^2} + {{\left( {v - {y_1}} \right)}^2}} \\
\text{We have} \\
\Rightarrow \left( {{x_1},{y_1}} \right) = (3,2)\,\,and\,\,D = 5\,\,put\,\,the\,\,value \\
\Rightarrow D = \sqrt {{{\left( {u - {x_1}} \right)}^2} + {{\left( {v - {y_1}} \right)}^2}} \\
\Rightarrow {D^2} = {\left( {u - {x_1}} \right)^2} + {\left( {v - {y_1}} \right)^2} \\
\Rightarrow {5^2} = {\left( {u - 3} \right)^2} + {\left( {v - 2} \right)^2} \\
\Rightarrow 25 = {\left( {u - 3} \right)^2} + {\left( {v - 2} \right)^2} \\
\text{now from the equation} 3x - 4y = 1 \text{satisfy the point (u,v) then} \\
\Rightarrow 3u - 4v = 1\, \\
\Rightarrow 3u = 1 + 4v\, \\
\Rightarrow u = \dfrac{{1 + 4v}}{3} \]
\[\text{Now put the value into} \\
\Rightarrow 25 = {\left( {u - 3} \right)^2} + {\left( {v - 2} \right)^2} \\
\Rightarrow 25 = {\left( {\dfrac{{1 + 4v}}{3}\, - 3} \right)^2} + {\left( {v - 2} \right)^2} \\
\Rightarrow 25 = {\left( {\dfrac{{1 + 4v - 9}}{3}} \right)^2} + {\left( {v - 2} \right)^2} \\
\Rightarrow 25 = {\left( {\dfrac{{4v - 8}}{3}} \right)^2} + {\left( {v - 2} \right)^2} \\
\Rightarrow 25 = \left( {\dfrac{{16{v^2} + 64 - 64v}}{9}} \right) + \left( {{v^2} + 4 - 4v} \right) \\
\Rightarrow 25 \times 9 = \left( {16{v^2} + 64 - 64v} \right) + \left( {9{v^2} + 36 - 36v} \right) \\
\Rightarrow 225 = \left( {25{v^2} + 100 - 100v} \right) \\
\Rightarrow 25{v^2} + 100 - 100v = 225 \\
\Rightarrow 25{v^2} + 100 - 225 - 100v = 0 \\
\Rightarrow 25{v^2} - 125 - 100v = 0 \\
\Rightarrow 25\left( {{v^2} - 5 - 4v} \right) = 0 \\
\Rightarrow {v^2} - 4v - 5 = 0 \\
\Rightarrow {v^2} - 5v + v - 5 = 0 \\
\Rightarrow v\left( {v - 5} \right) + 1\left( {v - 5} \right) = 0 \\
\Rightarrow \left( {v + 1} \right)\left( {v - 5} \right) = 0 \\
or \\
\Rightarrow v = - 1\,\,or\,\,v = 5 \\
\text{now put it into the} \\
\Rightarrow u = \dfrac{{1 + 4v}}{3}\, \\
\text{then},v = - 1\,\, \\
\Rightarrow u = \dfrac{{1 + 4\left( { - 1\,} \right)}}{3}\, = \dfrac{{1 - 4}}{3}\, = \dfrac{{ - 3}}{3} = - 1 \\
u = - 1 \\
\text{ similarly for}\,v = 5 \\
\Rightarrow u = \dfrac{{1 + 4v}}{3} \\
then,v = 5\,\, \\
\Rightarrow u = \dfrac{{1 + 4\left( {5\,} \right)}}{3}\, = \dfrac{{1 + 20}}{3}\, = \dfrac{{21}}{3} = 7 \\
\Rightarrow u = 7 \\ \]
Now we got the pair of the points $\left( {u,v} \right) = \left( {7,5} \right)$ or $\left( {u,v} \right) = \left( { - 1, - 1} \right) $
Which is on the given line and our desired answer or point (7, 5), or (-1,-1)
Note: The straight line question is very straight forward we have just followed the instruction given by the question and we got the points on the line which are (7, 5), or (-1,-1), and both points on line having the distance from the point (3, 2) are 5 unite and can be cross-checked with the help of the distance formula
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

