Answer
Verified
455.1k+ views
Hint: To solve this problem we will first find the volume of the one coin. As coins are in cylindrical shape so their volume we will calculate using the formula $\pi {{r}^{2}}h$. After finding the volume of one coin we will assume the number of coins required to be n, and multiply the number n with the volume of one coin. After doing this we will equate the obtained expression with the volume of the right circular cylinder which we will find using the same formula i.e. $\pi {{r}^{2}}h$. From there we will solve to find the value of n, and that will be our required answer.
Complete step by step answer:
We are given a coin whose diameter is 2.5 cm and 0.4 cm,
And we have to find the number of such coins required to form a right circular cylinder of height 15 cm and diameter 8 cm.
So first of all we will find the radius of the coin as,
Radius of coin = $\dfrac{Diameter\,of\,coin}{2}=\dfrac{2.5}{2}=1.25\,cm$
Now we know that coins are of cylindrical shape so their volume will be given by the formula $\pi {{r}^{2}}h$ where r is radius and h is height of the coin,
So we get the volume of the coin as,
= $\pi {{r}^{2}}h$
= $\pi \times {{\left( 1.25 \right)}^{2}}\times 0.4$
= $\pi {{\left( 1.25 \right)}^{2}}\left( 0.4 \right)$
Now we will assume that number of coins required to form the cylinder to be n,
So if we multiply the volume of one coin with n then we will get the volume of n coins,
Hence we get,
Volume of n number of coins = $n\pi {{\left( 1.25 \right)}^{2}}\left( 0.4 \right)$
Now this obtained volume should be equal to the volume of the right circular cylinder,
So we have to now find the volume of the right circular cylinder using the formula $\pi {{r}^{2}}h$,
So first radius of the cylinder is given as = $\dfrac{Diameter\,of\,cyl\operatorname{in}der}{2}=\dfrac{8}{2}=4\,cm$
Hence volume of cylinder we get as,
= $\pi {{r}^{2}}h$
= $\pi {{\left( 4 \right)}^{2}}\left( 15 \right)$
Now equation the volume of the cylinder with the volume of n number of coins, we get
\[\begin{align}
& n\pi {{\left( 1.4 \right)}^{2}}\left( 0.4 \right)=\pi {{\left( 4 \right)}^{2}}\left( 15 \right) \\
& \Rightarrow n=\dfrac{\pi {{\left( 4 \right)}^{2}}\left( 15 \right)}{\pi {{\left( 1.4 \right)}^{2}}\left( 0.4 \right)} \\
& \Rightarrow n=\dfrac{{{\left( 4 \right)}^{2}}\left( 15 \right)}{{{\left( 1.4 \right)}^{2}}\left( 0.4 \right)} \\
& \Rightarrow n=384 \\
\end{align}\]
Hence we get the number of coins as 384.
So, the correct answer is “Option B”.
Note: To solve this problem you should have prior knowledge of how to calculate the volume of the cylindrical figure. And also before solving these kinds of problems you need to first analyse the question carefully that which parameter here has to be considered like in this question it was volume, some students may get confused and might take surface area instead of volume but it is wrong so read the problem carefully first.
Complete step by step answer:
We are given a coin whose diameter is 2.5 cm and 0.4 cm,
And we have to find the number of such coins required to form a right circular cylinder of height 15 cm and diameter 8 cm.
So first of all we will find the radius of the coin as,
Radius of coin = $\dfrac{Diameter\,of\,coin}{2}=\dfrac{2.5}{2}=1.25\,cm$
Now we know that coins are of cylindrical shape so their volume will be given by the formula $\pi {{r}^{2}}h$ where r is radius and h is height of the coin,
So we get the volume of the coin as,
= $\pi {{r}^{2}}h$
= $\pi \times {{\left( 1.25 \right)}^{2}}\times 0.4$
= $\pi {{\left( 1.25 \right)}^{2}}\left( 0.4 \right)$
Now we will assume that number of coins required to form the cylinder to be n,
So if we multiply the volume of one coin with n then we will get the volume of n coins,
Hence we get,
Volume of n number of coins = $n\pi {{\left( 1.25 \right)}^{2}}\left( 0.4 \right)$
Now this obtained volume should be equal to the volume of the right circular cylinder,
So we have to now find the volume of the right circular cylinder using the formula $\pi {{r}^{2}}h$,
So first radius of the cylinder is given as = $\dfrac{Diameter\,of\,cyl\operatorname{in}der}{2}=\dfrac{8}{2}=4\,cm$
Hence volume of cylinder we get as,
= $\pi {{r}^{2}}h$
= $\pi {{\left( 4 \right)}^{2}}\left( 15 \right)$
Now equation the volume of the cylinder with the volume of n number of coins, we get
\[\begin{align}
& n\pi {{\left( 1.4 \right)}^{2}}\left( 0.4 \right)=\pi {{\left( 4 \right)}^{2}}\left( 15 \right) \\
& \Rightarrow n=\dfrac{\pi {{\left( 4 \right)}^{2}}\left( 15 \right)}{\pi {{\left( 1.4 \right)}^{2}}\left( 0.4 \right)} \\
& \Rightarrow n=\dfrac{{{\left( 4 \right)}^{2}}\left( 15 \right)}{{{\left( 1.4 \right)}^{2}}\left( 0.4 \right)} \\
& \Rightarrow n=384 \\
\end{align}\]
Hence we get the number of coins as 384.
So, the correct answer is “Option B”.
Note: To solve this problem you should have prior knowledge of how to calculate the volume of the cylindrical figure. And also before solving these kinds of problems you need to first analyse the question carefully that which parameter here has to be considered like in this question it was volume, some students may get confused and might take surface area instead of volume but it is wrong so read the problem carefully first.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Discuss the main reasons for poverty in India
A Paragraph on Pollution in about 100-150 Words
Why is monsoon considered a unifying bond class 10 social science CBSE
What makes elections in India democratic class 11 social science CBSE
What does the term Genocidal War refer to class 12 social science CBSE
A weight hangs freely from the end of a spring A boy class 11 physics CBSE