Answer
Verified
424.2k+ views
Hint: The letters present in ANNIHILATION are A, N, I, H, L, O and T. The number of A in the word is 2, number of N is 3, Number of I is 3 and rest of letters occur only once first we will write the number of possibilities to write 4 as sum of 2 or more numbers and then find the total number of permutations possible.
Complete step by step solution:
Let’s note down all possibilities to write 4 as sum of 2 or more integers
1. 1+ 1+ 1+ 1 = 4
2. 1+ 1+ 2 = 4
3. 2+ 2 = 4
4. 1+ 3 = 4
In the first condition we have to choose 4 different letters and arrange them, so the number of possibilities to choose 4 numbers out of 7 and arrange them is equal to ${}^{7}{{C}_{4}}\times 4!=840$
In the second condition we have to choose 2 different and 2 same number, we know that A, N, I occur more than once so we can choose one of them so total possibilities will be ${}^{3}{{C}_{1}}\times {}^{6}{{C}_{2}}\times \dfrac{4!}{2!}=540$
In the third case we have to choose a pair of same number, so we have to choose from A, N, I
So the number of total possibilities will be ${}^{3}{{C}_{2}}\times \dfrac{4!}{2!2!}=18$
In fourth case we have to choose 3 same number, N and I occur thrice so total possibilities will be ${}^{2}{{C}_{1}}\times {}^{6}{{C}_{1}}\times \dfrac{4!}{3!}=48$
So the total number of possibilities will be equal to 840+ 540+ 18+ 48 = 1446.
Note:
These types of problems can be solved by taking different cases because we do not know which letter will come how many times and we have to arrange the multiple occurring letters so it can only be solved by taking cases.
Complete step by step solution:
Let’s note down all possibilities to write 4 as sum of 2 or more integers
1. 1+ 1+ 1+ 1 = 4
2. 1+ 1+ 2 = 4
3. 2+ 2 = 4
4. 1+ 3 = 4
In the first condition we have to choose 4 different letters and arrange them, so the number of possibilities to choose 4 numbers out of 7 and arrange them is equal to ${}^{7}{{C}_{4}}\times 4!=840$
In the second condition we have to choose 2 different and 2 same number, we know that A, N, I occur more than once so we can choose one of them so total possibilities will be ${}^{3}{{C}_{1}}\times {}^{6}{{C}_{2}}\times \dfrac{4!}{2!}=540$
In the third case we have to choose a pair of same number, so we have to choose from A, N, I
So the number of total possibilities will be ${}^{3}{{C}_{2}}\times \dfrac{4!}{2!2!}=18$
In fourth case we have to choose 3 same number, N and I occur thrice so total possibilities will be ${}^{2}{{C}_{1}}\times {}^{6}{{C}_{1}}\times \dfrac{4!}{3!}=48$
So the total number of possibilities will be equal to 840+ 540+ 18+ 48 = 1446.
Note:
These types of problems can be solved by taking different cases because we do not know which letter will come how many times and we have to arrange the multiple occurring letters so it can only be solved by taking cases.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Discuss the main reasons for poverty in India
A Paragraph on Pollution in about 100-150 Words
Why is monsoon considered a unifying bond class 10 social science CBSE
What makes elections in India democratic class 11 social science CBSE
What does the term Genocidal War refer to class 12 social science CBSE
A weight hangs freely from the end of a spring A boy class 11 physics CBSE