
Find the nature of the roots of the following quadratic equation. If the real roots exist, find them.
$2{x^2} - 3x + 5 = 0$
A) x = 0 and x = -2
B) x = 3, x = -6
C) No real root
D) None of these
Answer
486.3k+ views
Hint: The nature of the roots depends on the value of the discriminant of the quadratic equation.
$a{x^2} + bx + c = 0$, where $a \ne 0$
Find the Discriminant, $D = {b^2} - 4ac$ , of the given quadratic equation, and check the sign (i.e. positive or negative or zero) to know if there are two solutions or one solution or no solution.
Complete step-by-step answer:
Step 1: Given the quadratic equation:
$2{x^2} - 3x + 5 = 0$
On comparing with standard quadratic equation: $a{x^2} + bx + c = 0$, where $a \ne 0$
a = 2, b = -3, c = 5
Step 2: Find discriminant:
$D = {b^2} - 4ac$
$D = {\left( { - 3} \right)^2} - 4 \times 2 \times 5$
$
\Rightarrow {\text{ }} = 9 - 40 \\
\Rightarrow {\text{ }} = - 31 \\
$
Step 3: Check the sign of discriminant:
$D < 0$
Hence, the roots are imaginary.
Final answer: The roots of $2{x^2} - 3x + 5 = 0$ are not real. Thus the correct option is (C).
Additional Information:
Roots of the quadratic equation is given by:
Quadratic equation: $a{x^2} + bx + c = 0$, where $a \ne 0$
Roots: \[x = \dfrac{{ - b \pm \sqrt D }}{{2a}}\]
The imaginary roots of the given quadratic equation are:
$2{x^2} - 3x + 5 = 0$
D = -31
\[x = \dfrac{{ - b \pm \sqrt D }}{{2a}}\]
$
{\text{ }}x = \dfrac{{ - \left( { - 3} \right) \pm \sqrt {\left( { - 31} \right)} }}{{2\left( 2 \right)}} \\
\Rightarrow {\text{ }} = \dfrac{{3 \pm {\text{i}}\sqrt {31} }}{4} \\
$
Note: For quadratic equation: $a{x^2} + bx + c = 0$, where $a \ne 0$
Let $y = f\left( x \right) = a{x^2} + bx + c = 0$
Discriminant, $D = {b^2} - 4ac$
A discriminant of zero indicates that the quadratic has a repeated real number solution.
i.e. $D = 0$ , roots are real and equal.
$ \Rightarrow {b^2} - 4ac = 0$
A positive discriminant indicates that the quadratic has two distinct real number solutions.
i.e. $D > 0$ , roots are real and unequal.
$ \Rightarrow {b^2} - 4ac > 0$
A negative discriminant indicates that neither of the solutions is real numbers.
And if D < 0, as in the case of the given question, roots are imaginary.
$ \Rightarrow {b^2} - 4ac < 0$
$a{x^2} + bx + c = 0$, where $a \ne 0$
Find the Discriminant, $D = {b^2} - 4ac$ , of the given quadratic equation, and check the sign (i.e. positive or negative or zero) to know if there are two solutions or one solution or no solution.
Complete step-by-step answer:
Step 1: Given the quadratic equation:
$2{x^2} - 3x + 5 = 0$
On comparing with standard quadratic equation: $a{x^2} + bx + c = 0$, where $a \ne 0$
a = 2, b = -3, c = 5
Step 2: Find discriminant:
$D = {b^2} - 4ac$
$D = {\left( { - 3} \right)^2} - 4 \times 2 \times 5$
$
\Rightarrow {\text{ }} = 9 - 40 \\
\Rightarrow {\text{ }} = - 31 \\
$
Step 3: Check the sign of discriminant:
$D < 0$
Hence, the roots are imaginary.
Final answer: The roots of $2{x^2} - 3x + 5 = 0$ are not real. Thus the correct option is (C).
Additional Information:
Roots of the quadratic equation is given by:
Quadratic equation: $a{x^2} + bx + c = 0$, where $a \ne 0$
Roots: \[x = \dfrac{{ - b \pm \sqrt D }}{{2a}}\]
The imaginary roots of the given quadratic equation are:
$2{x^2} - 3x + 5 = 0$
D = -31
\[x = \dfrac{{ - b \pm \sqrt D }}{{2a}}\]
$
{\text{ }}x = \dfrac{{ - \left( { - 3} \right) \pm \sqrt {\left( { - 31} \right)} }}{{2\left( 2 \right)}} \\
\Rightarrow {\text{ }} = \dfrac{{3 \pm {\text{i}}\sqrt {31} }}{4} \\
$
Note: For quadratic equation: $a{x^2} + bx + c = 0$, where $a \ne 0$
Let $y = f\left( x \right) = a{x^2} + bx + c = 0$
Discriminant, $D = {b^2} - 4ac$
A discriminant of zero indicates that the quadratic has a repeated real number solution.
i.e. $D = 0$ , roots are real and equal.
$ \Rightarrow {b^2} - 4ac = 0$

A positive discriminant indicates that the quadratic has two distinct real number solutions.
i.e. $D > 0$ , roots are real and unequal.
$ \Rightarrow {b^2} - 4ac > 0$

A negative discriminant indicates that neither of the solutions is real numbers.
And if D < 0, as in the case of the given question, roots are imaginary.
$ \Rightarrow {b^2} - 4ac < 0$

Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE

The area of a 6m wide road outside a garden in all class 10 maths CBSE

What is the electric flux through a cube of side 1 class 10 physics CBSE

If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE

The radius and height of a cylinder are in the ratio class 10 maths CBSE

An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE

Trending doubts
What did the military generals do How did their attitude class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

For Frost what do fire and ice stand for Here are some class 10 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE
