Answer
Verified
424.5k+ views
Hint: We first express the expectations as the means for the probability distribution. We use the formula of the mean of $E\left( X \right)=\sum{X.P\left( X \right)}$. We put the values from the chart to find the mean. It serves as the measure of central tendency of the probability distribution.
Complete step by step solution:
The mean of a probability distribution is the long-run arithmetic average value of a random variable having that distribution. If the random variable is denoted by, then it is also known as the expected value of (denoted).
We have been provided with the events and their probability distribution.
We apply the formula for mean for probability distribution.
If $E\left( X \right)$ be the means of the probability distribution then we can say that $E\left( X \right)=\sum{X.P\left( X \right)}$.
Now we have the all required values ewe put them in the formula to get
$\begin{align}
& E\left( X \right)=\sum{X.P\left( X \right)} \\
& \Rightarrow E\left( X \right)=1\times 0.2+2\times 0.1+3\times 0.35+4\times 0.05+5\times 0.3 \\
\end{align}$
We complete the multiplications to get
$\begin{align}
& E\left( X \right)=1\times 0.2+2\times 0.1+3\times 0.35+4\times 0.05+5\times 0.3 \\
& \Rightarrow E\left( X \right)=0.2+0.2+1.05+0.2+1.5=3.15 \\
\end{align}$
Note:
A binomial distribution represents the results from a simple experiment where there is “success” or “failure.” For example, if you are polling voters to see who is voting Democrat, the voters that say they will vote Democrat is a “success” and anything else is a failure.
Complete step by step solution:
The mean of a probability distribution is the long-run arithmetic average value of a random variable having that distribution. If the random variable is denoted by, then it is also known as the expected value of (denoted).
We have been provided with the events and their probability distribution.
We apply the formula for mean for probability distribution.
If $E\left( X \right)$ be the means of the probability distribution then we can say that $E\left( X \right)=\sum{X.P\left( X \right)}$.
Now we have the all required values ewe put them in the formula to get
$\begin{align}
& E\left( X \right)=\sum{X.P\left( X \right)} \\
& \Rightarrow E\left( X \right)=1\times 0.2+2\times 0.1+3\times 0.35+4\times 0.05+5\times 0.3 \\
\end{align}$
We complete the multiplications to get
$\begin{align}
& E\left( X \right)=1\times 0.2+2\times 0.1+3\times 0.35+4\times 0.05+5\times 0.3 \\
& \Rightarrow E\left( X \right)=0.2+0.2+1.05+0.2+1.5=3.15 \\
\end{align}$
Note:
A binomial distribution represents the results from a simple experiment where there is “success” or “failure.” For example, if you are polling voters to see who is voting Democrat, the voters that say they will vote Democrat is a “success” and anything else is a failure.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
10 examples of friction in our daily life