Answer
Verified
495k+ views
Hint: Multiply and divide by $\sqrt{2}$ in the bracket of ${{\left( \sin x-\cos x \right)}^{2}}$. Try to convert it to a single sine or cosine function. Also use the fact that $\cos x$ has a maximum value of ‘1’ at x equal to zero degree.
Here, we are given the expression as,
$y={{\cos }^{2}}\left( 45{}^\circ +x \right){{\left( \sin x-\cos x \right)}^{2}}$....................(1)
We have to calculate the maximum value of a given function y as written in equation (1). So first of all we need to simplify the given expression, then we look for the maximum value of ‘y’.
Let us divide and multiply the second bracket${{\left( \sin x-\cos x \right)}^{2}}$by $\sqrt{2}$ .
Now, we can write ‘y’ from equation (1) as;
\[\begin{align}
& y={{\cos }^{2}}\left( 45+x \right)\times {{\left( \dfrac{\sqrt{2}}{\sqrt{2}}\left( \sin x-\cos x \right) \right)}^{2}} \\
& y={{\cos }^{2}}\left( 45+x \right)\times {{\left( \sqrt{2} \right)}^{2}}{{\left( \dfrac{1}{\sqrt{2}}\sin x-\dfrac{1}{\sqrt{2}}\cos x \right)}^{2}} \\
\end{align}\]
We know the value of $\cos 45{}^\circ =\dfrac{1}{\sqrt{2}}$ , so we can replace $\dfrac{1}{\sqrt{2}}$ by $\cos 45{}^\circ $.
And also $\sin 45{}^\circ =\dfrac{1}{\sqrt{2}}$, so we can replace $\dfrac{1}{\sqrt{2}}$by $\sin 45{}^\circ $ in following way in the above equation:
$\begin{align}
& y=2{{\cos }^{2}}\left( 45+x \right){{\left( \sin 45\sin x-\cos 45\cos x \right)}^{2}} \\
& As,{{A}^{2}}={{\left( -A \right)}^{2}}, \\
\end{align}$
So we can rewrite ‘y’ as
$y=2{{\cos }^{2}}\left( 45+x \right){{\left( \cos 45\cos x-\sin 45\sin x \right)}^{2}}........\left( 2 \right)$
As we have a trigonometric identity as;
\[\cos \left( A+B \right)=cosAcosB-sinAsinB\] or vice versa is also true.
Therefore, equation (2) can be simplified as
\[\begin{align}
& y=2{{\cos }^{2}}\left( 45+x \right){{\left( \cos \left( 45+x \right) \right)}^{2}} \\
& y=2{{\cos }^{4}}\left( 45+x \right).............\left( 3 \right) \\
\end{align}\]
As we know range of $\cos x$ is [-1,1]
Or
$-1\le \cos x\le 1$
Therefore, $0\le {{\cos }^{2}}x\le 1$
Now $y=2{{\cos }^{4}}\left( 45+x \right)$
Will have a maximum value of 2 by taking the maximum value of \[\cos \left( 45+x \right)\] i.e. 1 at $\left( -45{}^\circ \right)$.
Hence, maximum value of given expression $y={{\cos }^{2}}\left( 45{}^\circ +x \right){{\left( \sin x-\cos x \right)}^{2}}$is 2.
Note: Another approach for the given equation would be that we can apply formula of
\[\cos \left( A+B \right)=cosAcosB-sinAsinB\]with \[\cos \left( 45+x \right)\]and simplifying ${{\left( \sin x-\cos x \right)}^{2}}$
$\begin{align}
& y={{\cos }^{2}}\left( 45+x \right){{\left( \sin x-\cos x \right)}^{2}} \\
& y={{\left( \cos 45\cos x-\sin 45\sin x \right)}^{2}}{{\left( \sin x-\cos x \right)}^{2}} \\
& y={{\left( \dfrac{1}{\sqrt{2}}\cos x-\dfrac{1}{\sqrt{2}}\sin x \right)}^{2}}{{\left( \sin x-\cos x \right)}^{2}} \\
\end{align}$
One can go wrong while relating the maximum value of ${{\cos }^{4}}\left( 45+x \right)$. (45 + x) has no effect on maximum value of ${{\cos }^{4}}\left( 45+x \right)$. As $\cos \theta $ always lies in [-1,1]. So, one can confuse here to get the maximum value of ${{\cos }^{4}}\left( 45+x \right)$.
Here, we are given the expression as,
$y={{\cos }^{2}}\left( 45{}^\circ +x \right){{\left( \sin x-\cos x \right)}^{2}}$....................(1)
We have to calculate the maximum value of a given function y as written in equation (1). So first of all we need to simplify the given expression, then we look for the maximum value of ‘y’.
Let us divide and multiply the second bracket${{\left( \sin x-\cos x \right)}^{2}}$by $\sqrt{2}$ .
Now, we can write ‘y’ from equation (1) as;
\[\begin{align}
& y={{\cos }^{2}}\left( 45+x \right)\times {{\left( \dfrac{\sqrt{2}}{\sqrt{2}}\left( \sin x-\cos x \right) \right)}^{2}} \\
& y={{\cos }^{2}}\left( 45+x \right)\times {{\left( \sqrt{2} \right)}^{2}}{{\left( \dfrac{1}{\sqrt{2}}\sin x-\dfrac{1}{\sqrt{2}}\cos x \right)}^{2}} \\
\end{align}\]
We know the value of $\cos 45{}^\circ =\dfrac{1}{\sqrt{2}}$ , so we can replace $\dfrac{1}{\sqrt{2}}$ by $\cos 45{}^\circ $.
And also $\sin 45{}^\circ =\dfrac{1}{\sqrt{2}}$, so we can replace $\dfrac{1}{\sqrt{2}}$by $\sin 45{}^\circ $ in following way in the above equation:
$\begin{align}
& y=2{{\cos }^{2}}\left( 45+x \right){{\left( \sin 45\sin x-\cos 45\cos x \right)}^{2}} \\
& As,{{A}^{2}}={{\left( -A \right)}^{2}}, \\
\end{align}$
So we can rewrite ‘y’ as
$y=2{{\cos }^{2}}\left( 45+x \right){{\left( \cos 45\cos x-\sin 45\sin x \right)}^{2}}........\left( 2 \right)$
As we have a trigonometric identity as;
\[\cos \left( A+B \right)=cosAcosB-sinAsinB\] or vice versa is also true.
Therefore, equation (2) can be simplified as
\[\begin{align}
& y=2{{\cos }^{2}}\left( 45+x \right){{\left( \cos \left( 45+x \right) \right)}^{2}} \\
& y=2{{\cos }^{4}}\left( 45+x \right).............\left( 3 \right) \\
\end{align}\]
As we know range of $\cos x$ is [-1,1]
Or
$-1\le \cos x\le 1$
Therefore, $0\le {{\cos }^{2}}x\le 1$
Now $y=2{{\cos }^{4}}\left( 45+x \right)$
Will have a maximum value of 2 by taking the maximum value of \[\cos \left( 45+x \right)\] i.e. 1 at $\left( -45{}^\circ \right)$.
Hence, maximum value of given expression $y={{\cos }^{2}}\left( 45{}^\circ +x \right){{\left( \sin x-\cos x \right)}^{2}}$is 2.
Note: Another approach for the given equation would be that we can apply formula of
\[\cos \left( A+B \right)=cosAcosB-sinAsinB\]with \[\cos \left( 45+x \right)\]and simplifying ${{\left( \sin x-\cos x \right)}^{2}}$
$\begin{align}
& y={{\cos }^{2}}\left( 45+x \right){{\left( \sin x-\cos x \right)}^{2}} \\
& y={{\left( \cos 45\cos x-\sin 45\sin x \right)}^{2}}{{\left( \sin x-\cos x \right)}^{2}} \\
& y={{\left( \dfrac{1}{\sqrt{2}}\cos x-\dfrac{1}{\sqrt{2}}\sin x \right)}^{2}}{{\left( \sin x-\cos x \right)}^{2}} \\
\end{align}$
One can go wrong while relating the maximum value of ${{\cos }^{4}}\left( 45+x \right)$. (45 + x) has no effect on maximum value of ${{\cos }^{4}}\left( 45+x \right)$. As $\cos \theta $ always lies in [-1,1]. So, one can confuse here to get the maximum value of ${{\cos }^{4}}\left( 45+x \right)$.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Kaziranga National Park is famous for A Lion B Tiger class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE