
Find the maximum value of y, If $y={{\cos }^{2}}\left( 45{}^\circ +x \right){{\left( \sin x-\cos x \right)}^{2}}$.
Answer
622.2k+ views
Hint: Multiply and divide by $\sqrt{2}$ in the bracket of ${{\left( \sin x-\cos x \right)}^{2}}$. Try to convert it to a single sine or cosine function. Also use the fact that $\cos x$ has a maximum value of ‘1’ at x equal to zero degree.
Here, we are given the expression as,
$y={{\cos }^{2}}\left( 45{}^\circ +x \right){{\left( \sin x-\cos x \right)}^{2}}$....................(1)
We have to calculate the maximum value of a given function y as written in equation (1). So first of all we need to simplify the given expression, then we look for the maximum value of ‘y’.
Let us divide and multiply the second bracket${{\left( \sin x-\cos x \right)}^{2}}$by $\sqrt{2}$ .
Now, we can write ‘y’ from equation (1) as;
\[\begin{align}
& y={{\cos }^{2}}\left( 45+x \right)\times {{\left( \dfrac{\sqrt{2}}{\sqrt{2}}\left( \sin x-\cos x \right) \right)}^{2}} \\
& y={{\cos }^{2}}\left( 45+x \right)\times {{\left( \sqrt{2} \right)}^{2}}{{\left( \dfrac{1}{\sqrt{2}}\sin x-\dfrac{1}{\sqrt{2}}\cos x \right)}^{2}} \\
\end{align}\]
We know the value of $\cos 45{}^\circ =\dfrac{1}{\sqrt{2}}$ , so we can replace $\dfrac{1}{\sqrt{2}}$ by $\cos 45{}^\circ $.
And also $\sin 45{}^\circ =\dfrac{1}{\sqrt{2}}$, so we can replace $\dfrac{1}{\sqrt{2}}$by $\sin 45{}^\circ $ in following way in the above equation:
$\begin{align}
& y=2{{\cos }^{2}}\left( 45+x \right){{\left( \sin 45\sin x-\cos 45\cos x \right)}^{2}} \\
& As,{{A}^{2}}={{\left( -A \right)}^{2}}, \\
\end{align}$
So we can rewrite ‘y’ as
$y=2{{\cos }^{2}}\left( 45+x \right){{\left( \cos 45\cos x-\sin 45\sin x \right)}^{2}}........\left( 2 \right)$
As we have a trigonometric identity as;
\[\cos \left( A+B \right)=cosAcosB-sinAsinB\] or vice versa is also true.
Therefore, equation (2) can be simplified as
\[\begin{align}
& y=2{{\cos }^{2}}\left( 45+x \right){{\left( \cos \left( 45+x \right) \right)}^{2}} \\
& y=2{{\cos }^{4}}\left( 45+x \right).............\left( 3 \right) \\
\end{align}\]
As we know range of $\cos x$ is [-1,1]
Or
$-1\le \cos x\le 1$
Therefore, $0\le {{\cos }^{2}}x\le 1$
Now $y=2{{\cos }^{4}}\left( 45+x \right)$
Will have a maximum value of 2 by taking the maximum value of \[\cos \left( 45+x \right)\] i.e. 1 at $\left( -45{}^\circ \right)$.
Hence, maximum value of given expression $y={{\cos }^{2}}\left( 45{}^\circ +x \right){{\left( \sin x-\cos x \right)}^{2}}$is 2.
Note: Another approach for the given equation would be that we can apply formula of
\[\cos \left( A+B \right)=cosAcosB-sinAsinB\]with \[\cos \left( 45+x \right)\]and simplifying ${{\left( \sin x-\cos x \right)}^{2}}$
$\begin{align}
& y={{\cos }^{2}}\left( 45+x \right){{\left( \sin x-\cos x \right)}^{2}} \\
& y={{\left( \cos 45\cos x-\sin 45\sin x \right)}^{2}}{{\left( \sin x-\cos x \right)}^{2}} \\
& y={{\left( \dfrac{1}{\sqrt{2}}\cos x-\dfrac{1}{\sqrt{2}}\sin x \right)}^{2}}{{\left( \sin x-\cos x \right)}^{2}} \\
\end{align}$
One can go wrong while relating the maximum value of ${{\cos }^{4}}\left( 45+x \right)$. (45 + x) has no effect on maximum value of ${{\cos }^{4}}\left( 45+x \right)$. As $\cos \theta $ always lies in [-1,1]. So, one can confuse here to get the maximum value of ${{\cos }^{4}}\left( 45+x \right)$.
Here, we are given the expression as,
$y={{\cos }^{2}}\left( 45{}^\circ +x \right){{\left( \sin x-\cos x \right)}^{2}}$....................(1)
We have to calculate the maximum value of a given function y as written in equation (1). So first of all we need to simplify the given expression, then we look for the maximum value of ‘y’.
Let us divide and multiply the second bracket${{\left( \sin x-\cos x \right)}^{2}}$by $\sqrt{2}$ .
Now, we can write ‘y’ from equation (1) as;
\[\begin{align}
& y={{\cos }^{2}}\left( 45+x \right)\times {{\left( \dfrac{\sqrt{2}}{\sqrt{2}}\left( \sin x-\cos x \right) \right)}^{2}} \\
& y={{\cos }^{2}}\left( 45+x \right)\times {{\left( \sqrt{2} \right)}^{2}}{{\left( \dfrac{1}{\sqrt{2}}\sin x-\dfrac{1}{\sqrt{2}}\cos x \right)}^{2}} \\
\end{align}\]
We know the value of $\cos 45{}^\circ =\dfrac{1}{\sqrt{2}}$ , so we can replace $\dfrac{1}{\sqrt{2}}$ by $\cos 45{}^\circ $.
And also $\sin 45{}^\circ =\dfrac{1}{\sqrt{2}}$, so we can replace $\dfrac{1}{\sqrt{2}}$by $\sin 45{}^\circ $ in following way in the above equation:
$\begin{align}
& y=2{{\cos }^{2}}\left( 45+x \right){{\left( \sin 45\sin x-\cos 45\cos x \right)}^{2}} \\
& As,{{A}^{2}}={{\left( -A \right)}^{2}}, \\
\end{align}$
So we can rewrite ‘y’ as
$y=2{{\cos }^{2}}\left( 45+x \right){{\left( \cos 45\cos x-\sin 45\sin x \right)}^{2}}........\left( 2 \right)$
As we have a trigonometric identity as;
\[\cos \left( A+B \right)=cosAcosB-sinAsinB\] or vice versa is also true.
Therefore, equation (2) can be simplified as
\[\begin{align}
& y=2{{\cos }^{2}}\left( 45+x \right){{\left( \cos \left( 45+x \right) \right)}^{2}} \\
& y=2{{\cos }^{4}}\left( 45+x \right).............\left( 3 \right) \\
\end{align}\]
As we know range of $\cos x$ is [-1,1]
Or
$-1\le \cos x\le 1$
Therefore, $0\le {{\cos }^{2}}x\le 1$
Now $y=2{{\cos }^{4}}\left( 45+x \right)$
Will have a maximum value of 2 by taking the maximum value of \[\cos \left( 45+x \right)\] i.e. 1 at $\left( -45{}^\circ \right)$.
Hence, maximum value of given expression $y={{\cos }^{2}}\left( 45{}^\circ +x \right){{\left( \sin x-\cos x \right)}^{2}}$is 2.
Note: Another approach for the given equation would be that we can apply formula of
\[\cos \left( A+B \right)=cosAcosB-sinAsinB\]with \[\cos \left( 45+x \right)\]and simplifying ${{\left( \sin x-\cos x \right)}^{2}}$
$\begin{align}
& y={{\cos }^{2}}\left( 45+x \right){{\left( \sin x-\cos x \right)}^{2}} \\
& y={{\left( \cos 45\cos x-\sin 45\sin x \right)}^{2}}{{\left( \sin x-\cos x \right)}^{2}} \\
& y={{\left( \dfrac{1}{\sqrt{2}}\cos x-\dfrac{1}{\sqrt{2}}\sin x \right)}^{2}}{{\left( \sin x-\cos x \right)}^{2}} \\
\end{align}$
One can go wrong while relating the maximum value of ${{\cos }^{4}}\left( 45+x \right)$. (45 + x) has no effect on maximum value of ${{\cos }^{4}}\left( 45+x \right)$. As $\cos \theta $ always lies in [-1,1]. So, one can confuse here to get the maximum value of ${{\cos }^{4}}\left( 45+x \right)$.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

