
Find the locus of the third vertex of a right-angled triangle, the ends of whose hypotenuse are (4,0) and (0,4).
Answer
593.7k+ views
Hint: a locus (Latin word for "place", "location") is a set of all points (commonly, a line, line segment a curve, or a surface) whose location satisfies or is determined by one or more specified conditions. In other words, the set of points that satisfy some property is often called the locus of a point satisfying this property.
The locus of a point P is such that it is equidistant from two given points. A and B i.e. PA=PB. The locus of a point at fixed distance d, from point P, is a circle with given point P as its center and d as its radius. Here in this question, we can use the distance formula for two given points.
Distance formula = \[\sqrt {{{(x_2 - x_1)}^2} + {{(y_2 - y_1)}^2}} \]
Complete step by step answer:
Let the point be \[(p,q)\]
\[B{C^2} = A{B^2} + A{C^2}\](By Pythagoras theorem)
\[{(4 - 0)^2} + {(0 - 4)^2} = {(p - 0)^2} + {(q - 4)^2} + {(p - 4)^2} + {(q - 0)^2}\]
\[16 + 16 = {p^2} + {q^2} + 16 - 8q + {p^2} + 16 - 8p + {q^2}\]
\[32 = 2({p^2} + {q^2} - 4p - 4q) + 32\]
Or \[{p^2} + {q^2} - 4p - 4q = 0\]
Replacing \[p \to x\]and \[q \to y\]
\[{x^2} + {y^2} - 4x - 4y = 0\] is the locus of the equation.
Note: we can also find this finding slope of two lines AB as \[m_1 = \dfrac{{y_2 - y_1}}{{x_2 - x_1}}\], and AC as \[m_2 = \dfrac{{y_2 - y_1}}{{x_2 - x_1}}\]
And for perpendicular lines\[{m_1}{m_2} = - 1\]
We get the required locus of the third vertex.
The locus of a point P is such that it is equidistant from two given points. A and B i.e. PA=PB. The locus of a point at fixed distance d, from point P, is a circle with given point P as its center and d as its radius. Here in this question, we can use the distance formula for two given points.
Distance formula = \[\sqrt {{{(x_2 - x_1)}^2} + {{(y_2 - y_1)}^2}} \]
Complete step by step answer:
Let the point be \[(p,q)\]
\[B{C^2} = A{B^2} + A{C^2}\](By Pythagoras theorem)
\[{(4 - 0)^2} + {(0 - 4)^2} = {(p - 0)^2} + {(q - 4)^2} + {(p - 4)^2} + {(q - 0)^2}\]
\[16 + 16 = {p^2} + {q^2} + 16 - 8q + {p^2} + 16 - 8p + {q^2}\]
\[32 = 2({p^2} + {q^2} - 4p - 4q) + 32\]
Or \[{p^2} + {q^2} - 4p - 4q = 0\]
Replacing \[p \to x\]and \[q \to y\]
\[{x^2} + {y^2} - 4x - 4y = 0\] is the locus of the equation.
Note: we can also find this finding slope of two lines AB as \[m_1 = \dfrac{{y_2 - y_1}}{{x_2 - x_1}}\], and AC as \[m_2 = \dfrac{{y_2 - y_1}}{{x_2 - x_1}}\]
And for perpendicular lines\[{m_1}{m_2} = - 1\]
We get the required locus of the third vertex.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

