Answer
Verified
464.7k+ views
Hint: A complex number is a number that can be expressed in the form \[p + iq\]
where,
p and q are real numbers and ‘i’ is a solution of the equation
\[{x^2} = - 1\]
\[\sqrt { - 1} = i\] or \[{i^2} = - 1\]
General form of complex number
\[z = p + iq\]
where,
p is known as the real part denote by \[\operatorname{Re} z\]
q is known as the imaginary part denote by \[im.z.\]
The modulus and conjugate of complex numbers-
Let \[z = m + in\] be a complex number.
Then, the modulus of z, denotes by \[\left| z \right| = \sqrt {{m^2} - {n^2}} \] and
The conjugate of z, denoted by \[\widetilde z\] is the complex number \[m - ni\]
In the Argand plane the modulus of the complex number \[m + ni = \sqrt {{m^2} - {n^2}} \] is the distance between the point \[(m,n)\] and the origin \[(0,0)\]
The x-axis termed as real axis and the y-axis termed as imaginary axis.
Locus complex number is obtained by letting
\[z = x + yi\] and simplifying the expression.
Operation of modulus, conjugate pairs and arguments are to be used for determining the locus of complex numbers.
Therefore,
Complete step by step answer:
Let \[z = x + iy\]
Then given \[\left| {\dfrac{{z - 3i}}{{z + 3i}}} \right| \leqslant \sqrt 2 - - - - - 1.\]
Putting the value of z in equation 1.
\[\left| {\dfrac{{x + iy - 3i}}{{x + iy + 3i}}} \right| \leqslant \sqrt 2 \]
\[\left| {\dfrac{{x + i(y - 3)}}{{x + i(y + 3)}}} \right| \leqslant \sqrt 2 \]
\[\sqrt {{x^2} + {{(y - 3)}^2}} \leqslant \sqrt 2 \sqrt {{x^2} + {{(y + 3)}^2}} \]
On squaring on both sides we get
\[{x^2} + {(y - 3)^2} \leqslant ({x^2} + {(y + 3)^2})\]
\[{x^2} + {y^2} + 9 - 6y \leqslant 2{x^2} + 2{y^2} + 18 + 12y\]
Subtracting like terms
\[{x^2} + {y^2} + 18y + 9 \geqslant 0\]
A circle with centre \[(0, - 9)\]and radius \[6\sqrt 2 \] unit
Note: Equation of complex locus of circle
The locus of z that satisfies the equation \[\left| {z - zo} \right| = r\]
Where, \[zo\] is a fixed complex number and r is a fixed positive real number consists of all points \[z\] whose distance from \[zo\] is \[r\].
Therefore, \[\left| {z - zo} \right| = r\] is the complex form of the equation of a circle.
\[\left| {z - zo} \right| < r\]represents the point interior of the circle.
\[\left| {z - zo} \right| > r\]represents the points exterior of the circle.
where,
p and q are real numbers and ‘i’ is a solution of the equation
\[{x^2} = - 1\]
\[\sqrt { - 1} = i\] or \[{i^2} = - 1\]
General form of complex number
\[z = p + iq\]
where,
p is known as the real part denote by \[\operatorname{Re} z\]
q is known as the imaginary part denote by \[im.z.\]
The modulus and conjugate of complex numbers-
Let \[z = m + in\] be a complex number.
Then, the modulus of z, denotes by \[\left| z \right| = \sqrt {{m^2} - {n^2}} \] and
The conjugate of z, denoted by \[\widetilde z\] is the complex number \[m - ni\]
In the Argand plane the modulus of the complex number \[m + ni = \sqrt {{m^2} - {n^2}} \] is the distance between the point \[(m,n)\] and the origin \[(0,0)\]
The x-axis termed as real axis and the y-axis termed as imaginary axis.
Locus complex number is obtained by letting
\[z = x + yi\] and simplifying the expression.
Operation of modulus, conjugate pairs and arguments are to be used for determining the locus of complex numbers.
Therefore,
Complete step by step answer:
Let \[z = x + iy\]
Then given \[\left| {\dfrac{{z - 3i}}{{z + 3i}}} \right| \leqslant \sqrt 2 - - - - - 1.\]
Putting the value of z in equation 1.
\[\left| {\dfrac{{x + iy - 3i}}{{x + iy + 3i}}} \right| \leqslant \sqrt 2 \]
\[\left| {\dfrac{{x + i(y - 3)}}{{x + i(y + 3)}}} \right| \leqslant \sqrt 2 \]
\[\sqrt {{x^2} + {{(y - 3)}^2}} \leqslant \sqrt 2 \sqrt {{x^2} + {{(y + 3)}^2}} \]
On squaring on both sides we get
\[{x^2} + {(y - 3)^2} \leqslant ({x^2} + {(y + 3)^2})\]
\[{x^2} + {y^2} + 9 - 6y \leqslant 2{x^2} + 2{y^2} + 18 + 12y\]
Subtracting like terms
\[{x^2} + {y^2} + 18y + 9 \geqslant 0\]
A circle with centre \[(0, - 9)\]and radius \[6\sqrt 2 \] unit
Note: Equation of complex locus of circle
The locus of z that satisfies the equation \[\left| {z - zo} \right| = r\]
Where, \[zo\] is a fixed complex number and r is a fixed positive real number consists of all points \[z\] whose distance from \[zo\] is \[r\].
Therefore, \[\left| {z - zo} \right| = r\] is the complex form of the equation of a circle.
\[\left| {z - zo} \right| < r\]represents the point interior of the circle.
\[\left| {z - zo} \right| > r\]represents the points exterior of the circle.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE