
Find the lengths of the medians of the triangle with vertices A (0,0,6), B (0,4,0) and C (6, 0, 0).
Answer
513k+ views
Hint: For solving the problem, we should know about the basics of finding a median from each of the vertices of the triangle. Finally, we can find the length of the medians by using distance formula on the vertices joining two points of a median. Distance formula is given by \[\sqrt{{{({{x}_{1}}-{{x}_{2}})}^{2}}+{{({{y}_{1}}-{{y}_{2}})}^{2}}+{{({{z}_{1}}-{{z}_{2}})}^{2}}}\]. Here, $({{x}_{1}},{{y}_{1}},{{z}_{1}})\text{ }and\text{ }({{x}_{2}},{{y}_{2}},{{z}_{2}})$ are the respective vertices between which we want to find the distance.
Complete step-by-step answer:
Basically, before starting to solve the problem, we first try to understand the definition of median which would be useful for doing this question. A median of a triangle is a line segment joining a vertex to the midpoint of the opposite side, thus bisecting that side. Thus, in the below figure of triangle, AE, CD, and BF are the three medians of the triangle. We first start by plotting the vertices A, B and C and then finding the respective mid-points of the sides AB, BC and CA.
Here, E, D and F are the respective mid-points of CB, AB and AC. Let A (0,0,6), B (0,4,0) and C (6,0,0).
Now, to find the midpoint between $({{x}_{1}},{{y}_{1}},{{z}_{1}})\text{ }and\text{ }({{x}_{2}},{{y}_{2}},{{z}_{2}})$, the formula is \[\left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2},\dfrac{{{y}_{1}}+{{y}_{2}}}{2},\dfrac{{{z}_{1}}+{{z}_{2}}}{2}\text{ } \right)\] for $({{x}_{1}},{{y}_{1}},{{z}_{1}})\text{ }and\text{ }({{x}_{2}},{{y}_{2}},{{z}_{2}})$ to be the respective vertices of the side of a triangle. Thus, we use this to find E, D and F. Thus, we get,
E = \[\left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2},\dfrac{{{y}_{1}}+{{y}_{2}}}{2},\dfrac{{{z}_{1}}+{{z}_{2}}}{2}\text{ } \right)=\left( \dfrac{0+6}{2},\dfrac{4+0}{2},\dfrac{0+0}{2} \right)\]= (3,2,0)
D=\[\left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2},\dfrac{{{y}_{1}}+{{y}_{2}}}{2},\dfrac{{{z}_{1}}+{{z}_{2}}}{2}\text{ } \right)=\left( \dfrac{0+0}{2},\dfrac{0+4}{2},\dfrac{6+0}{2} \right)\]= (0,2,3)
F=\[\left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2},\dfrac{{{y}_{1}}+{{y}_{2}}}{2},\dfrac{{{z}_{1}}+{{z}_{2}}}{2}\text{ } \right)=\left( \dfrac{0+6}{2},\dfrac{0+0}{2},\dfrac{6+0}{2} \right)\]= (3,0,3)
Now, we try to find median lengths using the distance formula. We have distance formula as \[\sqrt{{{({{x}_{1}}-{{x}_{2}})}^{2}}+{{({{y}_{1}}-{{y}_{2}})}^{2}}+{{({{z}_{1}}-{{z}_{2}})}^{2}}}\]. Thus,
AD = \[\sqrt{{{({{x}_{1}}-{{x}_{2}})}^{2}}+{{({{y}_{1}}-{{y}_{2}})}^{2}}+{{({{z}_{1}}-{{z}_{2}})}^{2}}}=\sqrt{{{(3-0)}^{2}}+{{(2-0)}^{2}}+{{(0-6)}^{2}}}=\sqrt{49}\]= 7
BE =\[\sqrt{{{({{x}_{1}}-{{x}_{2}})}^{2}}+{{({{y}_{1}}-{{y}_{2}})}^{2}}+{{({{z}_{1}}-{{z}_{2}})}^{2}}}=\sqrt{{{(3-0)}^{2}}+{{(0-4)}^{2}}+{{(3-0)}^{2}}}=\sqrt{34}\]
CF = \[\sqrt{{{({{x}_{1}}-{{x}_{2}})}^{2}}+{{({{y}_{1}}-{{y}_{2}})}^{2}}+{{({{z}_{1}}-{{z}_{2}})}^{2}}}=\sqrt{{{(0-6)}^{2}}+{{(2-0)}^{2}}+{{(3-0)}^{2}}}=\sqrt{49}\]= 7
Hence, the length of the medians are 7, $\sqrt{34}$ and 7.
Note: Another alternative to finding the lengths of the median of the triangle is to use the formula by Apollonius’ theorem –
$\sqrt{\dfrac{2{{b}^{2}}+2{{c}^{2}}-{{a}^{2}}}{4}}$, $\sqrt{\dfrac{2{{a}^{2}}+2{{c}^{2}}-{{b}^{2}}}{4}}$, $\sqrt{\dfrac{2{{a}^{2}}+2{{b}^{2}}-{{c}^{2}}}{4}}$. Here; a, b and c are the lengths of the sides of the triangle opposite to angles A, B and C.
Complete step-by-step answer:
Basically, before starting to solve the problem, we first try to understand the definition of median which would be useful for doing this question. A median of a triangle is a line segment joining a vertex to the midpoint of the opposite side, thus bisecting that side. Thus, in the below figure of triangle, AE, CD, and BF are the three medians of the triangle. We first start by plotting the vertices A, B and C and then finding the respective mid-points of the sides AB, BC and CA.

Here, E, D and F are the respective mid-points of CB, AB and AC. Let A (0,0,6), B (0,4,0) and C (6,0,0).
Now, to find the midpoint between $({{x}_{1}},{{y}_{1}},{{z}_{1}})\text{ }and\text{ }({{x}_{2}},{{y}_{2}},{{z}_{2}})$, the formula is \[\left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2},\dfrac{{{y}_{1}}+{{y}_{2}}}{2},\dfrac{{{z}_{1}}+{{z}_{2}}}{2}\text{ } \right)\] for $({{x}_{1}},{{y}_{1}},{{z}_{1}})\text{ }and\text{ }({{x}_{2}},{{y}_{2}},{{z}_{2}})$ to be the respective vertices of the side of a triangle. Thus, we use this to find E, D and F. Thus, we get,
E = \[\left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2},\dfrac{{{y}_{1}}+{{y}_{2}}}{2},\dfrac{{{z}_{1}}+{{z}_{2}}}{2}\text{ } \right)=\left( \dfrac{0+6}{2},\dfrac{4+0}{2},\dfrac{0+0}{2} \right)\]= (3,2,0)
D=\[\left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2},\dfrac{{{y}_{1}}+{{y}_{2}}}{2},\dfrac{{{z}_{1}}+{{z}_{2}}}{2}\text{ } \right)=\left( \dfrac{0+0}{2},\dfrac{0+4}{2},\dfrac{6+0}{2} \right)\]= (0,2,3)
F=\[\left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2},\dfrac{{{y}_{1}}+{{y}_{2}}}{2},\dfrac{{{z}_{1}}+{{z}_{2}}}{2}\text{ } \right)=\left( \dfrac{0+6}{2},\dfrac{0+0}{2},\dfrac{6+0}{2} \right)\]= (3,0,3)
Now, we try to find median lengths using the distance formula. We have distance formula as \[\sqrt{{{({{x}_{1}}-{{x}_{2}})}^{2}}+{{({{y}_{1}}-{{y}_{2}})}^{2}}+{{({{z}_{1}}-{{z}_{2}})}^{2}}}\]. Thus,
AD = \[\sqrt{{{({{x}_{1}}-{{x}_{2}})}^{2}}+{{({{y}_{1}}-{{y}_{2}})}^{2}}+{{({{z}_{1}}-{{z}_{2}})}^{2}}}=\sqrt{{{(3-0)}^{2}}+{{(2-0)}^{2}}+{{(0-6)}^{2}}}=\sqrt{49}\]= 7
BE =\[\sqrt{{{({{x}_{1}}-{{x}_{2}})}^{2}}+{{({{y}_{1}}-{{y}_{2}})}^{2}}+{{({{z}_{1}}-{{z}_{2}})}^{2}}}=\sqrt{{{(3-0)}^{2}}+{{(0-4)}^{2}}+{{(3-0)}^{2}}}=\sqrt{34}\]
CF = \[\sqrt{{{({{x}_{1}}-{{x}_{2}})}^{2}}+{{({{y}_{1}}-{{y}_{2}})}^{2}}+{{({{z}_{1}}-{{z}_{2}})}^{2}}}=\sqrt{{{(0-6)}^{2}}+{{(2-0)}^{2}}+{{(3-0)}^{2}}}=\sqrt{49}\]= 7
Hence, the length of the medians are 7, $\sqrt{34}$ and 7.
Note: Another alternative to finding the lengths of the median of the triangle is to use the formula by Apollonius’ theorem –
$\sqrt{\dfrac{2{{b}^{2}}+2{{c}^{2}}-{{a}^{2}}}{4}}$, $\sqrt{\dfrac{2{{a}^{2}}+2{{c}^{2}}-{{b}^{2}}}{4}}$, $\sqrt{\dfrac{2{{a}^{2}}+2{{b}^{2}}-{{c}^{2}}}{4}}$. Here; a, b and c are the lengths of the sides of the triangle opposite to angles A, B and C.
Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE

The area of a 6m wide road outside a garden in all class 10 maths CBSE

What is the electric flux through a cube of side 1 class 10 physics CBSE

If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE

The radius and height of a cylinder are in the ratio class 10 maths CBSE

An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE

Trending doubts
What did the military generals do How did their attitude class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

For Frost what do fire and ice stand for Here are some class 10 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE
