Answer
Verified
464.7k+ views
Hint: Here, we will use Pythagoras theorem to solve this. In Pythagoras theorem, the sum of the squares on the legs of the right triangle is equal to the square on the hypotenuse.
Formula used
${(hypotenuse)^2} = {(base)^2} + {(perpendicular)^2}$
Complete step by step solution:
Let $AC$be the perpendicular on the side $BD$.
Now, we will solve $\Delta ABC$,
Here, $AB = 30cm$
$BC = y$
By using Pythagoras theorem
${(hypotenuse)^2} = {(base)^2} + {(perpendicular)^2}$
${(AB)^2} = {(BC)^2} + {(AC)^2}$
${(30)^2} = {(y)^2} + {(AC)^2}$
$30 \times 30 = {y^2} + {(AC)^2}$
$900 - {y^2} = A{C^2}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,....(i)$
We will take $\Delta ACD$
$AD = 25cm$
$CD = 7cm$
By using Pythagoras theorem
${(hypotenuse)^2} = {(base)^2} + {(perpendicular)^2}$
${(25)^2} = {(7)^2} + {(AC)^2}$
$25 \times 25 = 7 \times 7 + {(AC)^2}$
$625 = 49 + {(AC)^2}$
$625 - 49 = {(AC)^2}$
$576 = {(AC)^2}$
Square root both sides, we will get
\[\sqrt {576} = \sqrt {{{(AC)}^2}} \]
$\sqrt {576} = AC$
We will factorize the value $576$.
\[576 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3\]
Now, $\sqrt {576} $$ = AC$
$\sqrt {2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3} = AC$
$\sqrt {{2^2} \times {2^2} \times {2^2} \times {3^2}} = AC$
$\sqrt {{{(24)}^2}} = AC$2
$24cm = AC$
Put the value of $AC$ in equation (i) we have
$900 - {y^2} = {(24)^2}$
$900 - {y^2} = {(24)^2}$
$900 - {y^2} = 576$
$900 - 576 = {y^2}$
$324 = {y^2}$
So, factorize the number $324$
$324 = 2 \times 2 \times 3 \times 3 \times 3 \times 3$
$ = {2^2} \times {3^2} \times {3^2}$
$ = {(2 \times 3 \times 3)^2} = {(18)^2}$
So, ${(18)^2} = {y^2}$
When the powers are same, we equate the base,
Hence, $y = 18$
Note: Students must first be able to identify the type of triangle they are dealing with and then apply the appropriate formula for solving the problem.Pythagoras formula can be applied only to right angled triangles
Formula used
${(hypotenuse)^2} = {(base)^2} + {(perpendicular)^2}$
Complete step by step solution:
Let $AC$be the perpendicular on the side $BD$.
Now, we will solve $\Delta ABC$,
Here, $AB = 30cm$
$BC = y$
By using Pythagoras theorem
${(hypotenuse)^2} = {(base)^2} + {(perpendicular)^2}$
${(AB)^2} = {(BC)^2} + {(AC)^2}$
${(30)^2} = {(y)^2} + {(AC)^2}$
$30 \times 30 = {y^2} + {(AC)^2}$
$900 - {y^2} = A{C^2}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,....(i)$
We will take $\Delta ACD$
$AD = 25cm$
$CD = 7cm$
By using Pythagoras theorem
${(hypotenuse)^2} = {(base)^2} + {(perpendicular)^2}$
${(25)^2} = {(7)^2} + {(AC)^2}$
$25 \times 25 = 7 \times 7 + {(AC)^2}$
$625 = 49 + {(AC)^2}$
$625 - 49 = {(AC)^2}$
$576 = {(AC)^2}$
Square root both sides, we will get
\[\sqrt {576} = \sqrt {{{(AC)}^2}} \]
$\sqrt {576} = AC$
We will factorize the value $576$.
\[576 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3\]
Now, $\sqrt {576} $$ = AC$
$\sqrt {2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3} = AC$
$\sqrt {{2^2} \times {2^2} \times {2^2} \times {3^2}} = AC$
$\sqrt {{{(24)}^2}} = AC$2
$24cm = AC$
Put the value of $AC$ in equation (i) we have
$900 - {y^2} = {(24)^2}$
$900 - {y^2} = {(24)^2}$
$900 - {y^2} = 576$
$900 - 576 = {y^2}$
$324 = {y^2}$
So, factorize the number $324$
$324 = 2 \times 2 \times 3 \times 3 \times 3 \times 3$
$ = {2^2} \times {3^2} \times {3^2}$
$ = {(2 \times 3 \times 3)^2} = {(18)^2}$
So, ${(18)^2} = {y^2}$
When the powers are same, we equate the base,
Hence, $y = 18$
Note: Students must first be able to identify the type of triangle they are dealing with and then apply the appropriate formula for solving the problem.Pythagoras formula can be applied only to right angled triangles
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
10 examples of friction in our daily life