
Find the lateral surface area and total surface area of an equilateral triangle-based prism with height 8 cm and base 4 cm.
Answer
578.4k+ views
Hint: First of all, draw the diagram of the equilateral triangle-based prism to have a clear idea of what we have to find. Then use the formula for finding L.S.A and T.S.A of the equilateral triangle-based prism.
Complete step-by-step solution:
Given that the base of the prism is an equilateral triangle with side 4 cm as shown in the given figure:
Let \[p\] be the perimeter of the base of the prism i.e., the perimeter of equilateral \[\Delta ABC\].
So, \[p = 4 + 4 + 4 = 12{\text{ cm}}\]
Given height of the prism \[h = 8\;{\text{cm}}\]
We know that the lateral surface area of the triangle-based prism is given by \[p \times h\] where \[p\] is the perimeter of the base triangle and \[h\] is the height of the prism.
Therefore, L.S.A of the prism \[ = p \times h = 12 \times 8 = 96{\text{ c}}{{\text{m}}^2}\]
Now, consider the area of equilateral \[\Delta ABC\].
We know that the area of the equilateral triangle with side \[a\] is given by \[\dfrac{{{a^2}}}{4}\].
So, area of \[\Delta ABC = \dfrac{{\sqrt 3 {{\left( 4 \right)}^2}}}{4} = 4\sqrt 3 \]
We know that the total surface area of the triangle based prism with base area \[A\], perimeter \[p\] and \[h\] is the height of the prism is given by \[2 \times A + p \times h\].
Therefore, the total surface area of the prism \[ = 2 \times 4\sqrt 3 + 12 \times 8\]
\[
= 8\sqrt 3 + 96 \\
= 8\left( {1.73} \right) + 96 \\
= 13.84 + 96 \\
= 109.84{\text{ c}}{{\text{m}}^2} \]
Thus, the L.S.A of the prism is \[96{\text{ c}}{{\text{m}}^2}\] and the T.S.A of the prism is \[{\text{109}}{\text{.84 c}}{{\text{m}}^2}\].
Note: The lateral surface area of the triangle-based prism is given by \[p \times h\] where \[p\] is the perimeter of the base triangle and \[h\] is the height of the prism. The total surface area of the triangle based prism with base area \[A\], perimeter \[p\] and \[h\] is the height of the prism is given by \[2 \times A + p \times h\].
Complete step-by-step solution:
Given that the base of the prism is an equilateral triangle with side 4 cm as shown in the given figure:
Let \[p\] be the perimeter of the base of the prism i.e., the perimeter of equilateral \[\Delta ABC\].
So, \[p = 4 + 4 + 4 = 12{\text{ cm}}\]
Given height of the prism \[h = 8\;{\text{cm}}\]
We know that the lateral surface area of the triangle-based prism is given by \[p \times h\] where \[p\] is the perimeter of the base triangle and \[h\] is the height of the prism.
Therefore, L.S.A of the prism \[ = p \times h = 12 \times 8 = 96{\text{ c}}{{\text{m}}^2}\]
Now, consider the area of equilateral \[\Delta ABC\].
We know that the area of the equilateral triangle with side \[a\] is given by \[\dfrac{{{a^2}}}{4}\].
So, area of \[\Delta ABC = \dfrac{{\sqrt 3 {{\left( 4 \right)}^2}}}{4} = 4\sqrt 3 \]
We know that the total surface area of the triangle based prism with base area \[A\], perimeter \[p\] and \[h\] is the height of the prism is given by \[2 \times A + p \times h\].
Therefore, the total surface area of the prism \[ = 2 \times 4\sqrt 3 + 12 \times 8\]
\[
= 8\sqrt 3 + 96 \\
= 8\left( {1.73} \right) + 96 \\
= 13.84 + 96 \\
= 109.84{\text{ c}}{{\text{m}}^2} \]
Thus, the L.S.A of the prism is \[96{\text{ c}}{{\text{m}}^2}\] and the T.S.A of the prism is \[{\text{109}}{\text{.84 c}}{{\text{m}}^2}\].
Note: The lateral surface area of the triangle-based prism is given by \[p \times h\] where \[p\] is the perimeter of the base triangle and \[h\] is the height of the prism. The total surface area of the triangle based prism with base area \[A\], perimeter \[p\] and \[h\] is the height of the prism is given by \[2 \times A + p \times h\].
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

