Answer
Verified
493.8k+ views
Hint: To find the integral roots of the polynomial \[f\left( x \right)={{x}^{3}}+6{{x}^{2}}+11x+6\], we will equate the polynomial to zero and factorize the polynomial by adding or subtracting some terms from the polynomial. This method is called factoring the polynomial by splitting the intermediate terms.
Complete step-by-step answer:
We have the polynomial \[f\left( x \right)={{x}^{3}}+6{{x}^{2}}+11x+6\]. We have to find the integral roots of the polynomial. So, we will equate the polynomial to zero and factorize it to get the roots of the polynomial.
Thus, we have \[f\left( x \right)={{x}^{3}}+6{{x}^{2}}+11x+6=0\].
We can write the above expression as \[{{x}^{3}}+{{x}^{2}}+5{{x}^{2}}+5x+6x+6=0\].
Taking out the common terms, we have \[{{x}^{2}}\left( x+1 \right)+5x\left( x+1 \right)+6\left( x+1 \right)=0\].
Thus, we have \[\left( x+1 \right)\left( {{x}^{2}}+5x+6 \right)=0\].
We can rewrite the above equation as \[\left( x+1 \right)\left( {{x}^{2}}+2x+3x+6 \right)=0\].
Taking out the common terms, we have \[\left( x+1 \right)\left\{ x\left( x+2 \right)+3\left( x+2 \right) \right\}=0\].
Thus, we have \[\left( x+1 \right)\left( x+2 \right)\left( x+3 \right)=0\].
So, we get \[x=-1,-2,-3\].
Hence, the integral roots of the polynomial \[f\left( x \right)={{x}^{3}}+6{{x}^{2}}+11x+6\] are \[-1,-2,-3\].
Note: We observe that the equation given to us is a polynomial equation. Polynomial is an expression consisting of variables and coefficients that involves only the operations of addition, subtraction, multiplication or division, and non-negative integer exponents of variables. Degree of a polynomial is the value of the highest power of degrees of its individual term. We observe that the polynomial given to us is of degree 3. There are multiple ways to solve a polynomial equation, like completing the square and factoring the polynomial by splitting the intermediate terms. We have solved this question using the factorization method by splitting the intermediate terms. It’s necessary to keep in mind that we have to consider only integral solutions of the given equation. All other solutions will give an incorrect answer.
Complete step-by-step answer:
We have the polynomial \[f\left( x \right)={{x}^{3}}+6{{x}^{2}}+11x+6\]. We have to find the integral roots of the polynomial. So, we will equate the polynomial to zero and factorize it to get the roots of the polynomial.
Thus, we have \[f\left( x \right)={{x}^{3}}+6{{x}^{2}}+11x+6=0\].
We can write the above expression as \[{{x}^{3}}+{{x}^{2}}+5{{x}^{2}}+5x+6x+6=0\].
Taking out the common terms, we have \[{{x}^{2}}\left( x+1 \right)+5x\left( x+1 \right)+6\left( x+1 \right)=0\].
Thus, we have \[\left( x+1 \right)\left( {{x}^{2}}+5x+6 \right)=0\].
We can rewrite the above equation as \[\left( x+1 \right)\left( {{x}^{2}}+2x+3x+6 \right)=0\].
Taking out the common terms, we have \[\left( x+1 \right)\left\{ x\left( x+2 \right)+3\left( x+2 \right) \right\}=0\].
Thus, we have \[\left( x+1 \right)\left( x+2 \right)\left( x+3 \right)=0\].
So, we get \[x=-1,-2,-3\].
Hence, the integral roots of the polynomial \[f\left( x \right)={{x}^{3}}+6{{x}^{2}}+11x+6\] are \[-1,-2,-3\].
Note: We observe that the equation given to us is a polynomial equation. Polynomial is an expression consisting of variables and coefficients that involves only the operations of addition, subtraction, multiplication or division, and non-negative integer exponents of variables. Degree of a polynomial is the value of the highest power of degrees of its individual term. We observe that the polynomial given to us is of degree 3. There are multiple ways to solve a polynomial equation, like completing the square and factoring the polynomial by splitting the intermediate terms. We have solved this question using the factorization method by splitting the intermediate terms. It’s necessary to keep in mind that we have to consider only integral solutions of the given equation. All other solutions will give an incorrect answer.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
How much time does it take to bleed after eating p class 12 biology CBSE