     Question Answers

# Find the HCF of $15$,$25$and $30$.  Hint: Try to find individual factors.

HCF is the Highest common factor.
HCF for two or more numbers is the largest number that divides each one of them without leaving a remainder.
Given the numbers $15$,$25$and $30$.
First, we need to find the individual factors of each number.
Factors of 15, ${S_1} = \left\{ {1,3,5,15} \right\}$
Factors of 25, ${S_2} = \left\{ {1,5,25} \right\}$
Factors of 30, ${S_3} = \left\{ {1,3,5,6,10,15} \right\}$
Common factors of $15$,$25$and $30$ are
${S_1} \cap {S_2} \cap {S_3} = \left\{ {1,5} \right\}$
The largest number in the above set is $5$.
Hence the HCF of $15$,$25$and $30$ is $5$.
Note: HCF is also known as the Greatest Common Measure (GCM) and Greatest Common Divisor (GCD). HCF is always less than equal to the smallest number involved. Two or more prime numbers have HCF $= 1$.
.
View Notes
HCF  HCF of Two Numbers  Application of LCM and HCF  HCF and LCM  Factors of 30  Table of 30 - Multiplication Table of 30  Prime Factorization Of HCF And LCM  Value of cos 30  Sec 30  Relation Between HCF and LCM  