Find the general value of $\theta $, if $\sqrt 3 \tan 2\theta + \sqrt 3 \tan 3\theta + \tan 2\theta \tan 3\theta = 1$.
(A) $\left[ {n\pi + \dfrac{\pi }{5}} \right]$ (B) $\left( {n + \dfrac{1}{6}} \right)\dfrac{\pi }{5}$ (C) $\left( {2n \pm \dfrac{1}{6}} \right)\dfrac{\pi }{6}$ (D) $\left( {n + \dfrac{1}{3}} \right)\dfrac{\pi }{5}$
Answer
380.7k+ views
Hint: Convert the given equation in equation containing $\tan 5\theta $ using the formula:
$ \Rightarrow \tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$
Complete step-by-step answer:
The given equation is $\sqrt 3 \tan 2\theta + \sqrt 3 \tan 3\theta + \tan 2\theta \tan 3\theta = 1$. This can be written as:
\[
\Rightarrow \sqrt 3 \left( {\tan 2\theta + \tan 3\theta } \right) + \tan 2\theta \tan 3\theta = 1, \\
\Rightarrow \sqrt 3 \left( {\tan 2\theta + \tan 3\theta } \right) = 1 - \tan 2\theta \tan 3\theta , \\
\Rightarrow \sqrt 3 \dfrac{{\left( {\tan 2\theta + \tan 3\theta } \right)}}{{1 - \tan 2\theta \tan 3\theta }} = 1, \\
\Rightarrow \dfrac{{\tan 2\theta + \tan 3\theta }}{{1 - \tan 2\theta \tan 3\theta }} = \dfrac{1}{{\sqrt 3 }} ....(i) \\
\]
We know that, $\dfrac{1}{{\sqrt 3 }} = \tan \dfrac{\pi }{6}$ and $\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$, if we substitute $A = 2\theta $ and $B = 3\theta $, we have $\dfrac{{\tan 2\theta + \tan 3\theta }}{{1 - \tan 2\theta \tan 3\theta }} = \tan 5\theta $. Putting these values in equation \[(i)\], we’ll get:
$
\Rightarrow \tan 5\theta = \tan \dfrac{\pi }{6}, \\
\Rightarrow 5\theta = n\pi + \dfrac{\pi }{6}, \\
\Rightarrow \theta = \dfrac{1}{5}\left( {n\pi + \dfrac{\pi }{6}} \right), \\
\Rightarrow \theta = \left( {n + \dfrac{1}{6}} \right)\dfrac{\pi }{5} \\
$
Thus, the general value of $\theta $ is $\left( {n + \dfrac{1}{6}} \right)\dfrac{\pi }{5}$. (B) is the correct option.
Note: In the above equation, we get $\tan 5\theta = \tan \dfrac{\pi }{6}$. As we know that $\tan x$ is periodic with period $\pi $, that’s why instead of $5\theta = \dfrac{\pi }{6}$ we have to take $5\theta = n\pi + \dfrac{\pi }{6}$. From this we can say that the value of $5\theta $ will repeat after every integral multiple of $\pi $.
$ \Rightarrow \tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$
Complete step-by-step answer:
The given equation is $\sqrt 3 \tan 2\theta + \sqrt 3 \tan 3\theta + \tan 2\theta \tan 3\theta = 1$. This can be written as:
\[
\Rightarrow \sqrt 3 \left( {\tan 2\theta + \tan 3\theta } \right) + \tan 2\theta \tan 3\theta = 1, \\
\Rightarrow \sqrt 3 \left( {\tan 2\theta + \tan 3\theta } \right) = 1 - \tan 2\theta \tan 3\theta , \\
\Rightarrow \sqrt 3 \dfrac{{\left( {\tan 2\theta + \tan 3\theta } \right)}}{{1 - \tan 2\theta \tan 3\theta }} = 1, \\
\Rightarrow \dfrac{{\tan 2\theta + \tan 3\theta }}{{1 - \tan 2\theta \tan 3\theta }} = \dfrac{1}{{\sqrt 3 }} ....(i) \\
\]
We know that, $\dfrac{1}{{\sqrt 3 }} = \tan \dfrac{\pi }{6}$ and $\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$, if we substitute $A = 2\theta $ and $B = 3\theta $, we have $\dfrac{{\tan 2\theta + \tan 3\theta }}{{1 - \tan 2\theta \tan 3\theta }} = \tan 5\theta $. Putting these values in equation \[(i)\], we’ll get:
$
\Rightarrow \tan 5\theta = \tan \dfrac{\pi }{6}, \\
\Rightarrow 5\theta = n\pi + \dfrac{\pi }{6}, \\
\Rightarrow \theta = \dfrac{1}{5}\left( {n\pi + \dfrac{\pi }{6}} \right), \\
\Rightarrow \theta = \left( {n + \dfrac{1}{6}} \right)\dfrac{\pi }{5} \\
$
Thus, the general value of $\theta $ is $\left( {n + \dfrac{1}{6}} \right)\dfrac{\pi }{5}$. (B) is the correct option.
Note: In the above equation, we get $\tan 5\theta = \tan \dfrac{\pi }{6}$. As we know that $\tan x$ is periodic with period $\pi $, that’s why instead of $5\theta = \dfrac{\pi }{6}$ we have to take $5\theta = n\pi + \dfrac{\pi }{6}$. From this we can say that the value of $5\theta $ will repeat after every integral multiple of $\pi $.
Recently Updated Pages
Define absolute refractive index of a medium

Find out what do the algal bloom and redtides sign class 10 biology CBSE

Prove that the function fleft x right xn is continuous class 12 maths CBSE

Find the values of other five trigonometric functions class 10 maths CBSE

Find the values of other five trigonometric ratios class 10 maths CBSE

Find the values of other five trigonometric functions class 10 maths CBSE

Trending doubts
The lightest gas is A nitrogen B helium C oxygen D class 11 chemistry CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Which place is known as the tea garden of India class 8 social science CBSE

What is pollution? How many types of pollution? Define it

Write a letter to the principal requesting him to grant class 10 english CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE
