
Find the general value of $\theta $, if $\sqrt 3 \tan 2\theta + \sqrt 3 \tan 3\theta + \tan 2\theta \tan 3\theta = 1$.
(A) $\left[ {n\pi + \dfrac{\pi }{5}} \right]$ (B) $\left( {n + \dfrac{1}{6}} \right)\dfrac{\pi }{5}$ (C) $\left( {2n \pm \dfrac{1}{6}} \right)\dfrac{\pi }{6}$ (D) $\left( {n + \dfrac{1}{3}} \right)\dfrac{\pi }{5}$
Answer
606k+ views
Hint: Convert the given equation in equation containing $\tan 5\theta $ using the formula:
$ \Rightarrow \tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$
Complete step-by-step answer:
The given equation is $\sqrt 3 \tan 2\theta + \sqrt 3 \tan 3\theta + \tan 2\theta \tan 3\theta = 1$. This can be written as:
\[
\Rightarrow \sqrt 3 \left( {\tan 2\theta + \tan 3\theta } \right) + \tan 2\theta \tan 3\theta = 1, \\
\Rightarrow \sqrt 3 \left( {\tan 2\theta + \tan 3\theta } \right) = 1 - \tan 2\theta \tan 3\theta , \\
\Rightarrow \sqrt 3 \dfrac{{\left( {\tan 2\theta + \tan 3\theta } \right)}}{{1 - \tan 2\theta \tan 3\theta }} = 1, \\
\Rightarrow \dfrac{{\tan 2\theta + \tan 3\theta }}{{1 - \tan 2\theta \tan 3\theta }} = \dfrac{1}{{\sqrt 3 }} ....(i) \\
\]
We know that, $\dfrac{1}{{\sqrt 3 }} = \tan \dfrac{\pi }{6}$ and $\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$, if we substitute $A = 2\theta $ and $B = 3\theta $, we have $\dfrac{{\tan 2\theta + \tan 3\theta }}{{1 - \tan 2\theta \tan 3\theta }} = \tan 5\theta $. Putting these values in equation \[(i)\], we’ll get:
$
\Rightarrow \tan 5\theta = \tan \dfrac{\pi }{6}, \\
\Rightarrow 5\theta = n\pi + \dfrac{\pi }{6}, \\
\Rightarrow \theta = \dfrac{1}{5}\left( {n\pi + \dfrac{\pi }{6}} \right), \\
\Rightarrow \theta = \left( {n + \dfrac{1}{6}} \right)\dfrac{\pi }{5} \\
$
Thus, the general value of $\theta $ is $\left( {n + \dfrac{1}{6}} \right)\dfrac{\pi }{5}$. (B) is the correct option.
Note: In the above equation, we get $\tan 5\theta = \tan \dfrac{\pi }{6}$. As we know that $\tan x$ is periodic with period $\pi $, that’s why instead of $5\theta = \dfrac{\pi }{6}$ we have to take $5\theta = n\pi + \dfrac{\pi }{6}$. From this we can say that the value of $5\theta $ will repeat after every integral multiple of $\pi $.
$ \Rightarrow \tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$
Complete step-by-step answer:
The given equation is $\sqrt 3 \tan 2\theta + \sqrt 3 \tan 3\theta + \tan 2\theta \tan 3\theta = 1$. This can be written as:
\[
\Rightarrow \sqrt 3 \left( {\tan 2\theta + \tan 3\theta } \right) + \tan 2\theta \tan 3\theta = 1, \\
\Rightarrow \sqrt 3 \left( {\tan 2\theta + \tan 3\theta } \right) = 1 - \tan 2\theta \tan 3\theta , \\
\Rightarrow \sqrt 3 \dfrac{{\left( {\tan 2\theta + \tan 3\theta } \right)}}{{1 - \tan 2\theta \tan 3\theta }} = 1, \\
\Rightarrow \dfrac{{\tan 2\theta + \tan 3\theta }}{{1 - \tan 2\theta \tan 3\theta }} = \dfrac{1}{{\sqrt 3 }} ....(i) \\
\]
We know that, $\dfrac{1}{{\sqrt 3 }} = \tan \dfrac{\pi }{6}$ and $\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$, if we substitute $A = 2\theta $ and $B = 3\theta $, we have $\dfrac{{\tan 2\theta + \tan 3\theta }}{{1 - \tan 2\theta \tan 3\theta }} = \tan 5\theta $. Putting these values in equation \[(i)\], we’ll get:
$
\Rightarrow \tan 5\theta = \tan \dfrac{\pi }{6}, \\
\Rightarrow 5\theta = n\pi + \dfrac{\pi }{6}, \\
\Rightarrow \theta = \dfrac{1}{5}\left( {n\pi + \dfrac{\pi }{6}} \right), \\
\Rightarrow \theta = \left( {n + \dfrac{1}{6}} \right)\dfrac{\pi }{5} \\
$
Thus, the general value of $\theta $ is $\left( {n + \dfrac{1}{6}} \right)\dfrac{\pi }{5}$. (B) is the correct option.
Note: In the above equation, we get $\tan 5\theta = \tan \dfrac{\pi }{6}$. As we know that $\tan x$ is periodic with period $\pi $, that’s why instead of $5\theta = \dfrac{\pi }{6}$ we have to take $5\theta = n\pi + \dfrac{\pi }{6}$. From this we can say that the value of $5\theta $ will repeat after every integral multiple of $\pi $.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

