Answer

Verified

469.5k+ views

Hint: Try to use the formula of $\left( {{a^2} - {b^2}} \right) = \left( {a + b} \right)\left( {a - b} \right)$.

We can write above equation as $a\left( {{b^4} - {c^4}} \right) - b\left( {{b^4} - {c^4}} \right) - b\left( {{a^4} - {b^4}} \right) + c\left( {{a^4} - {b^4}} \right).$

$ \Rightarrow \left( {{b^2} - {c^2}} \right)\left( {{b^2} + {c^2}} \right)\left( {a - b} \right) + \left( {{a^2} - {b^2}} \right)\left( {{a^2} + {b^2}} \right)\left( {c - b} \right)$

$ \Rightarrow \left( {b - c} \right)\left( {b + c} \right)\left( {{b^2} + {c^2}} \right)\left( {a - b} \right) + \left( {a - b} \right)\left( {a + b} \right)\left( {{a^2} + {b^2}} \right)\left( {c - b} \right)$

$ \Rightarrow \left( {b - c} \right)\left( {a - b} \right)\left( {\left( {b + c} \right)\left( {{b^2} + {c^2}} \right) - \left( {a + b} \right)\left( {{a^2} + {b^2}} \right)} \right)$

$ \Rightarrow \left( {b - c} \right)\left( {a - b} \right)\left( {{b^3} + bc + c{b^2} + {c^3} - {a^3} - a{b^2} - b{a^2} - {b^3}} \right)$

$ \Rightarrow \left( {b - c} \right)\left( {a - b} \right)\left( {bc\left( {c + b} \right) - ab\left( {a + b} \right) + \left( {c - a} \right)\left( {{c^2} + {a^2} + ac} \right)} \right)$

$ \Rightarrow \left( {b - c} \right)\left( {a - b} \right)\left( {b\left( {{c^2} + cb - {a^2} - ab} \right) + \left( {c - a} \right)\left( {{c^2} + {a^2} + ac} \right)} \right)$

$ \Rightarrow \left( {b - c} \right)\left( {a - b} \right)\left( {b\left( {{c^2} - {a^2}} \right) + {b^2}\left( {c - a} \right)} \right) + \left( {c - a} \right)\left( {{c^2} + {a^2} + ac} \right)$

$ \Rightarrow \left( {b - c} \right)\left( {a - b} \right)\left( {c - a} \right)\left( {b\left( {c + a} \right) + {b^2} + {c^2} + {a^2} + ac} \right)$

Answer $ \Rightarrow \left( {b - c} \right)\left( {a - b} \right)\left( {c - a} \right)\left( {{a^2} + {b^2} + {c^2} + ac + bc + ab} \right)$

Note: In these questions, try to solve the terms one by one by taking common out and using formulas to simplify.

We can write above equation as $a\left( {{b^4} - {c^4}} \right) - b\left( {{b^4} - {c^4}} \right) - b\left( {{a^4} - {b^4}} \right) + c\left( {{a^4} - {b^4}} \right).$

$ \Rightarrow \left( {{b^2} - {c^2}} \right)\left( {{b^2} + {c^2}} \right)\left( {a - b} \right) + \left( {{a^2} - {b^2}} \right)\left( {{a^2} + {b^2}} \right)\left( {c - b} \right)$

$ \Rightarrow \left( {b - c} \right)\left( {b + c} \right)\left( {{b^2} + {c^2}} \right)\left( {a - b} \right) + \left( {a - b} \right)\left( {a + b} \right)\left( {{a^2} + {b^2}} \right)\left( {c - b} \right)$

$ \Rightarrow \left( {b - c} \right)\left( {a - b} \right)\left( {\left( {b + c} \right)\left( {{b^2} + {c^2}} \right) - \left( {a + b} \right)\left( {{a^2} + {b^2}} \right)} \right)$

$ \Rightarrow \left( {b - c} \right)\left( {a - b} \right)\left( {{b^3} + bc + c{b^2} + {c^3} - {a^3} - a{b^2} - b{a^2} - {b^3}} \right)$

$ \Rightarrow \left( {b - c} \right)\left( {a - b} \right)\left( {bc\left( {c + b} \right) - ab\left( {a + b} \right) + \left( {c - a} \right)\left( {{c^2} + {a^2} + ac} \right)} \right)$

$ \Rightarrow \left( {b - c} \right)\left( {a - b} \right)\left( {b\left( {{c^2} + cb - {a^2} - ab} \right) + \left( {c - a} \right)\left( {{c^2} + {a^2} + ac} \right)} \right)$

$ \Rightarrow \left( {b - c} \right)\left( {a - b} \right)\left( {b\left( {{c^2} - {a^2}} \right) + {b^2}\left( {c - a} \right)} \right) + \left( {c - a} \right)\left( {{c^2} + {a^2} + ac} \right)$

$ \Rightarrow \left( {b - c} \right)\left( {a - b} \right)\left( {c - a} \right)\left( {b\left( {c + a} \right) + {b^2} + {c^2} + {a^2} + ac} \right)$

Answer $ \Rightarrow \left( {b - c} \right)\left( {a - b} \right)\left( {c - a} \right)\left( {{a^2} + {b^2} + {c^2} + ac + bc + ab} \right)$

Note: In these questions, try to solve the terms one by one by taking common out and using formulas to simplify.

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Mark and label the given geoinformation on the outline class 11 social science CBSE

When people say No pun intended what does that mea class 8 english CBSE

Name the states which share their boundary with Indias class 9 social science CBSE

Give an account of the Northern Plains of India class 9 social science CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Trending doubts

A group of fish is known as class 7 english CBSE

The highest dam in India is A Bhakra dam B Tehri dam class 10 social science CBSE

Write all prime numbers between 80 and 100 class 8 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Onam is the main festival of which state A Karnataka class 7 social science CBSE

Who administers the oath of office to the President class 10 social science CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Kolkata port is situated on the banks of river A Ganga class 9 social science CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE