
Find the factors of $a\left( {{b^4} - {c^4}} \right) + b\left( {{c^4} - {a^4}} \right) + c\left( {{a^4} - {b^4}} \right).$
Answer
621.6k+ views
Hint: Try to use the formula of $\left( {{a^2} - {b^2}} \right) = \left( {a + b} \right)\left( {a - b} \right)$.
We can write above equation as $a\left( {{b^4} - {c^4}} \right) - b\left( {{b^4} - {c^4}} \right) - b\left( {{a^4} - {b^4}} \right) + c\left( {{a^4} - {b^4}} \right).$
$ \Rightarrow \left( {{b^2} - {c^2}} \right)\left( {{b^2} + {c^2}} \right)\left( {a - b} \right) + \left( {{a^2} - {b^2}} \right)\left( {{a^2} + {b^2}} \right)\left( {c - b} \right)$
$ \Rightarrow \left( {b - c} \right)\left( {b + c} \right)\left( {{b^2} + {c^2}} \right)\left( {a - b} \right) + \left( {a - b} \right)\left( {a + b} \right)\left( {{a^2} + {b^2}} \right)\left( {c - b} \right)$
$ \Rightarrow \left( {b - c} \right)\left( {a - b} \right)\left( {\left( {b + c} \right)\left( {{b^2} + {c^2}} \right) - \left( {a + b} \right)\left( {{a^2} + {b^2}} \right)} \right)$
$ \Rightarrow \left( {b - c} \right)\left( {a - b} \right)\left( {{b^3} + bc + c{b^2} + {c^3} - {a^3} - a{b^2} - b{a^2} - {b^3}} \right)$
$ \Rightarrow \left( {b - c} \right)\left( {a - b} \right)\left( {bc\left( {c + b} \right) - ab\left( {a + b} \right) + \left( {c - a} \right)\left( {{c^2} + {a^2} + ac} \right)} \right)$
$ \Rightarrow \left( {b - c} \right)\left( {a - b} \right)\left( {b\left( {{c^2} + cb - {a^2} - ab} \right) + \left( {c - a} \right)\left( {{c^2} + {a^2} + ac} \right)} \right)$
$ \Rightarrow \left( {b - c} \right)\left( {a - b} \right)\left( {b\left( {{c^2} - {a^2}} \right) + {b^2}\left( {c - a} \right)} \right) + \left( {c - a} \right)\left( {{c^2} + {a^2} + ac} \right)$
$ \Rightarrow \left( {b - c} \right)\left( {a - b} \right)\left( {c - a} \right)\left( {b\left( {c + a} \right) + {b^2} + {c^2} + {a^2} + ac} \right)$
Answer $ \Rightarrow \left( {b - c} \right)\left( {a - b} \right)\left( {c - a} \right)\left( {{a^2} + {b^2} + {c^2} + ac + bc + ab} \right)$
Note: In these questions, try to solve the terms one by one by taking common out and using formulas to simplify.
We can write above equation as $a\left( {{b^4} - {c^4}} \right) - b\left( {{b^4} - {c^4}} \right) - b\left( {{a^4} - {b^4}} \right) + c\left( {{a^4} - {b^4}} \right).$
$ \Rightarrow \left( {{b^2} - {c^2}} \right)\left( {{b^2} + {c^2}} \right)\left( {a - b} \right) + \left( {{a^2} - {b^2}} \right)\left( {{a^2} + {b^2}} \right)\left( {c - b} \right)$
$ \Rightarrow \left( {b - c} \right)\left( {b + c} \right)\left( {{b^2} + {c^2}} \right)\left( {a - b} \right) + \left( {a - b} \right)\left( {a + b} \right)\left( {{a^2} + {b^2}} \right)\left( {c - b} \right)$
$ \Rightarrow \left( {b - c} \right)\left( {a - b} \right)\left( {\left( {b + c} \right)\left( {{b^2} + {c^2}} \right) - \left( {a + b} \right)\left( {{a^2} + {b^2}} \right)} \right)$
$ \Rightarrow \left( {b - c} \right)\left( {a - b} \right)\left( {{b^3} + bc + c{b^2} + {c^3} - {a^3} - a{b^2} - b{a^2} - {b^3}} \right)$
$ \Rightarrow \left( {b - c} \right)\left( {a - b} \right)\left( {bc\left( {c + b} \right) - ab\left( {a + b} \right) + \left( {c - a} \right)\left( {{c^2} + {a^2} + ac} \right)} \right)$
$ \Rightarrow \left( {b - c} \right)\left( {a - b} \right)\left( {b\left( {{c^2} + cb - {a^2} - ab} \right) + \left( {c - a} \right)\left( {{c^2} + {a^2} + ac} \right)} \right)$
$ \Rightarrow \left( {b - c} \right)\left( {a - b} \right)\left( {b\left( {{c^2} - {a^2}} \right) + {b^2}\left( {c - a} \right)} \right) + \left( {c - a} \right)\left( {{c^2} + {a^2} + ac} \right)$
$ \Rightarrow \left( {b - c} \right)\left( {a - b} \right)\left( {c - a} \right)\left( {b\left( {c + a} \right) + {b^2} + {c^2} + {a^2} + ac} \right)$
Answer $ \Rightarrow \left( {b - c} \right)\left( {a - b} \right)\left( {c - a} \right)\left( {{a^2} + {b^2} + {c^2} + ac + bc + ab} \right)$
Note: In these questions, try to solve the terms one by one by taking common out and using formulas to simplify.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

