
How to find the exact value of \[\sec \left( { - \dfrac{\pi }{3}} \right)\] ?
Answer
498.6k+ views
Hint: This problem is easy once we find the definition of sec. A secant of a curve is a line that intersects the curve at least two distinct points in geometry. Secant is derived from the Latin word secare, which means "to cut." A secant can intersect a circle at exactly two points in the case of a circle.
Complete step by step solution:
\[\sec = \dfrac{1}{{\cos }}\]
Let's start by converting to degrees from radians. The conversion for radians to degrees
\[\dfrac{{180}}{\pi }\].
\[
\dfrac{{180}}{\pi } \times \left( { - \dfrac{\pi }{3}} \right) \\
= \left( { - {{60}^\circ }} \right) \\
\]
To make this a positive angle, we must subtract 60 from 360, giving us \[{300^\circ }\] .
This is a unique perspective because it provides us with a precise response. However, we must first determine the reference angle before adding our special triangle. A reference angle is the angle between the terminal side of \[\theta \] to the x axis . It should always satisfy the interval \[{0^\circ } \leqslant \beta < {90^\circ }\] . The nearest x axis interception of \[{300^\circ }\] is at \[{360^\circ }\] . After subtracting, we arrive at a reference angle of \[{60^\circ }\] . We use the \[30 - 60 - 90\] , 1 , \[\sqrt 3 \] , 2 .
Since 60 is greater than 30 , and \[{60^\circ }\] is the reference angle , this indicates that the side opposite our reference angle has been measured \[\sqrt 3 \] . The hypotenuse is always the longest, with a length of 2. As a result, we can deduce that the adjacent side is 1.
Applying the definition of cos:
adjacent/hypotenuse \[ = \] \[ - \dfrac{1}{2}\] (cos is negative in quadrant IV)
Substituting into sec .
1/(adjacent/hypotenuse) \[ = \] hypotenuse/adjacent \[ = - 2\]
Therefore, \[\sec \left( { - \dfrac{\pi }{3}} \right) = - 2\].
Note:
Sine, cosine, and tangent are the three most common trigonometric ratios. However, even though they are rarely used, there are three additional ratios: secant, cosecant, and cotangent. Since they can be conveniently calculated using the three key ratios, most calculators don't even have a button for them.
Complete step by step solution:
\[\sec = \dfrac{1}{{\cos }}\]
Let's start by converting to degrees from radians. The conversion for radians to degrees
\[\dfrac{{180}}{\pi }\].
\[
\dfrac{{180}}{\pi } \times \left( { - \dfrac{\pi }{3}} \right) \\
= \left( { - {{60}^\circ }} \right) \\
\]
To make this a positive angle, we must subtract 60 from 360, giving us \[{300^\circ }\] .
This is a unique perspective because it provides us with a precise response. However, we must first determine the reference angle before adding our special triangle. A reference angle is the angle between the terminal side of \[\theta \] to the x axis . It should always satisfy the interval \[{0^\circ } \leqslant \beta < {90^\circ }\] . The nearest x axis interception of \[{300^\circ }\] is at \[{360^\circ }\] . After subtracting, we arrive at a reference angle of \[{60^\circ }\] . We use the \[30 - 60 - 90\] , 1 , \[\sqrt 3 \] , 2 .
Since 60 is greater than 30 , and \[{60^\circ }\] is the reference angle , this indicates that the side opposite our reference angle has been measured \[\sqrt 3 \] . The hypotenuse is always the longest, with a length of 2. As a result, we can deduce that the adjacent side is 1.
Applying the definition of cos:
adjacent/hypotenuse \[ = \] \[ - \dfrac{1}{2}\] (cos is negative in quadrant IV)
Substituting into sec .
1/(adjacent/hypotenuse) \[ = \] hypotenuse/adjacent \[ = - 2\]
Therefore, \[\sec \left( { - \dfrac{\pi }{3}} \right) = - 2\].
Note:
Sine, cosine, and tangent are the three most common trigonometric ratios. However, even though they are rarely used, there are three additional ratios: secant, cosecant, and cotangent. Since they can be conveniently calculated using the three key ratios, most calculators don't even have a button for them.
Recently Updated Pages
Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Class 10 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

How many members did the Constituent Assembly of India class 10 social science CBSE

Write an application to the principal requesting five class 10 english CBSE

The Constitution of India was adopted on A 26 November class 10 social science CBSE

