
How do you find the equivalent exponential expression ${{\left( {{7}^{3}} \right)}^{2}}$?
Answer
539.4k+ views
Hint: It is an expression of power of another power. So, multiply both the powers first. You can use the formula ${{\left( {{a}^{m}} \right)}^{n}}={{a}^{mn}}$. Then do the necessary simplification, if required to obtain the required solution.
Complete step by step answer:
An expression containing a power of another power, we can write it as a single power with the exponent equal to the multiplication of both the powers of the given expression.
So if we have a base ‘a’, the first power as ‘m’ and the second power over ‘m’ as ‘n’ in the form ${{\left( {{a}^{m}} \right)}^{n}}$, then we can simplify it as ${{\left( {{a}^{m}} \right)}^{n}}={{a}^{m\times n}}={{a}^{mn}}$
Now, considering our expression ${{\left( {{7}^{3}} \right)}^{2}}$
Here, ‘3’ is the first power and ‘2’ is another power over ‘3’. So, to write it as a single power of ‘7’, we have to multiply both the powers.
Multiplying both the powers, we get
\[\begin{align}
& \Rightarrow {{7}^{3\times 2}} \\
& \Rightarrow {{7}^{6}} \\
& \Rightarrow 117649 \\
\end{align}\]
This is the required solution of the given question.
Note: The powers should be multiplied to convert the expression to a single exponent of ‘7’. Then it should be written in maximum simplified form. For example the above expression could also be written as the single exponent of ‘7’ i.e. ${{7}^{6}}$. But the numeric value of ${{7}^{6}}=117649$ is the appropriate answer to the given question.
Complete step by step answer:
An expression containing a power of another power, we can write it as a single power with the exponent equal to the multiplication of both the powers of the given expression.
So if we have a base ‘a’, the first power as ‘m’ and the second power over ‘m’ as ‘n’ in the form ${{\left( {{a}^{m}} \right)}^{n}}$, then we can simplify it as ${{\left( {{a}^{m}} \right)}^{n}}={{a}^{m\times n}}={{a}^{mn}}$
Now, considering our expression ${{\left( {{7}^{3}} \right)}^{2}}$
Here, ‘3’ is the first power and ‘2’ is another power over ‘3’. So, to write it as a single power of ‘7’, we have to multiply both the powers.
Multiplying both the powers, we get
\[\begin{align}
& \Rightarrow {{7}^{3\times 2}} \\
& \Rightarrow {{7}^{6}} \\
& \Rightarrow 117649 \\
\end{align}\]
This is the required solution of the given question.
Note: The powers should be multiplied to convert the expression to a single exponent of ‘7’. Then it should be written in maximum simplified form. For example the above expression could also be written as the single exponent of ‘7’ i.e. ${{7}^{6}}$. But the numeric value of ${{7}^{6}}=117649$ is the appropriate answer to the given question.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Which places in India experience sunrise first and class 9 social science CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Write the 6 fundamental rights of India and explain in detail

Difference Between Plant Cell and Animal Cell

What is pollution? How many types of pollution? Define it

What is the full form of pH?

