Answer
Verified
444k+ views
Hint:
Here we have to find the value of the variable \[k\]. We will find the discriminant of the given quadratic equation. As the roots are real and equal, we will equate the value of the discriminant to 0. Then we will get the equation including \[k\] as a variable. After solving the obtained equation, we will get the required value of the variable \[k\].
Formula used:
We will use the formula of the discriminant, \[D = {b^2} - 4ac\], where \[b\] is the coefficient of \[x\], \[c\] is the constant term of equation and \[a\] is the coefficient of \[{x^{}}\].
Complete step by step solution:
We will first find the value of the discriminant of the given equation.
Substituting the value of \[a\], \[b\] and \[c\] from the given quadratic equation in the formula of discriminant \[D = {b^2} - 4ac\] , we get
\[ \Rightarrow D = {\left[ {2\left( {k + 1} \right)} \right]^2} - 4 \times \left( {3k + 1} \right) \times 1\]
Now, we know that the roots of the given equation are real and equal. Therefore, the discriminant will be 0.
Equating the above equation to 0, we get
\[ \Rightarrow {\left[ {2\left( {k + 1} \right)} \right]^2} - 4 \times \left( {3k + 1} \right) \times 1 = 0\]
On simplifying the terms, we get
\[ \Rightarrow 4{k^2} + 4 + 8k - 12k - 4 = 0\]
Adding the like terms, we get
\[ \Rightarrow 4{k^2} - 4k = 0\]
On factoring the equation, we get
\[ \Rightarrow 4k\left( {k - 1} \right) = 0\]
Now applying zero product property, we can write
\[\begin{array}{l} \Rightarrow 4k = 0\\ \Rightarrow k = 0\end{array}\]
or
\[\begin{array}{l} \Rightarrow \left( {k - 1} \right) = 0\\ \Rightarrow k = 1\end{array}\] .
Thus, the possible values of \[k\] are 0 and 1.
Note:
We need to keep in mind that the roots of any quadratic equation are two, and similarly the roots of the cubic equation are three and so on. Generally, the numbers of possible roots of any equation are equal to the highest power of the equation. The values of the roots always satisfy their respective equation i.e. when we put values of the roots in their respective equation, we get the value as zero.
Here we have to find the value of the variable \[k\]. We will find the discriminant of the given quadratic equation. As the roots are real and equal, we will equate the value of the discriminant to 0. Then we will get the equation including \[k\] as a variable. After solving the obtained equation, we will get the required value of the variable \[k\].
Formula used:
We will use the formula of the discriminant, \[D = {b^2} - 4ac\], where \[b\] is the coefficient of \[x\], \[c\] is the constant term of equation and \[a\] is the coefficient of \[{x^{}}\].
Complete step by step solution:
We will first find the value of the discriminant of the given equation.
Substituting the value of \[a\], \[b\] and \[c\] from the given quadratic equation in the formula of discriminant \[D = {b^2} - 4ac\] , we get
\[ \Rightarrow D = {\left[ {2\left( {k + 1} \right)} \right]^2} - 4 \times \left( {3k + 1} \right) \times 1\]
Now, we know that the roots of the given equation are real and equal. Therefore, the discriminant will be 0.
Equating the above equation to 0, we get
\[ \Rightarrow {\left[ {2\left( {k + 1} \right)} \right]^2} - 4 \times \left( {3k + 1} \right) \times 1 = 0\]
On simplifying the terms, we get
\[ \Rightarrow 4{k^2} + 4 + 8k - 12k - 4 = 0\]
Adding the like terms, we get
\[ \Rightarrow 4{k^2} - 4k = 0\]
On factoring the equation, we get
\[ \Rightarrow 4k\left( {k - 1} \right) = 0\]
Now applying zero product property, we can write
\[\begin{array}{l} \Rightarrow 4k = 0\\ \Rightarrow k = 0\end{array}\]
or
\[\begin{array}{l} \Rightarrow \left( {k - 1} \right) = 0\\ \Rightarrow k = 1\end{array}\] .
Thus, the possible values of \[k\] are 0 and 1.
Note:
We need to keep in mind that the roots of any quadratic equation are two, and similarly the roots of the cubic equation are three and so on. Generally, the numbers of possible roots of any equation are equal to the highest power of the equation. The values of the roots always satisfy their respective equation i.e. when we put values of the roots in their respective equation, we get the value as zero.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
The male gender of Mare is Horse class 11 biology CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths