
Find the distance between $A\left( {a + b,b - a} \right)$ and $B\left( {a - b,a + b} \right)$?
Answer
602.1k+ views
Hint: In this question we will use distance formula to find the distance between two points. Distance formula, $d = \sqrt {{{\left( {{x_1} - {x_2}} \right)}^2} + {{\left( {{y_1} - {y_2}} \right)}^2}} $.
Complete step-by-step answer:
Now points given are,
$A\left( {a + b,b - a} \right)$ and $B\left( {a - b,a + b} \right)$
Distance Formula: The distance formula is used to determine the distance, $d$ , between two points. If the coordinates of the two points are $\left( {{x_1},{y_1}} \right)$ and $\left( {{x_2},{y_2}} \right)$, the distance equals the square root of $\left( {{x_1} - {x_2}} \right)$ squared $ + \left( {{y_1} - {y_2}} \right)$ squared.
$d = \sqrt {{{\left( {{x_1} - {x_2}} \right)}^2} + {{\left( {{y_1} - {y_2}} \right)}^2}} $
Now, the distance between $A$ and$B$ is determined by using the distance formula.
$
\Rightarrow {\text{ }}AB = \sqrt {{{\left( {\left( {a + b} \right) - \left( {a - b} \right)} \right)}^2} + {{\left( {\left( {b - a} \right) - \left( {a + b} \right)} \right)}^2}} \\
{\text{or }}AB = \sqrt {{{\left( {a + b - a + b} \right)}^2} + {{\left( {b - a - a - b} \right)}^2}} \\
{\text{or }}AB = \sqrt {{{\left( {2b} \right)}^2} + {{\left( { - 2a} \right)}^2}} \\
{\text{or }}AB = \sqrt {4{b^2} + 4{a^2}} \\
{\text{or }}AB = \sqrt {4\left( {{a^2} + {b^2}} \right)} \\
{\text{or }}AB = 2\sqrt {\left( {{a^2} + {b^2}} \right)} \\
$
Thus the distance between $A\left( {a + b,b - a} \right)$ and $B\left( {a - b,a + b} \right)$$ = 2\sqrt {\left( {{a^2} + {b^2}} \right)} $
Note: These types of questions can be solved by using distance formulas. In this question, we simply apply the distance formula between the given point and we get the distance between the points $A{\text{ and }}B$.
Complete step-by-step answer:
Now points given are,
$A\left( {a + b,b - a} \right)$ and $B\left( {a - b,a + b} \right)$
Distance Formula: The distance formula is used to determine the distance, $d$ , between two points. If the coordinates of the two points are $\left( {{x_1},{y_1}} \right)$ and $\left( {{x_2},{y_2}} \right)$, the distance equals the square root of $\left( {{x_1} - {x_2}} \right)$ squared $ + \left( {{y_1} - {y_2}} \right)$ squared.
$d = \sqrt {{{\left( {{x_1} - {x_2}} \right)}^2} + {{\left( {{y_1} - {y_2}} \right)}^2}} $
Now, the distance between $A$ and$B$ is determined by using the distance formula.
$
\Rightarrow {\text{ }}AB = \sqrt {{{\left( {\left( {a + b} \right) - \left( {a - b} \right)} \right)}^2} + {{\left( {\left( {b - a} \right) - \left( {a + b} \right)} \right)}^2}} \\
{\text{or }}AB = \sqrt {{{\left( {a + b - a + b} \right)}^2} + {{\left( {b - a - a - b} \right)}^2}} \\
{\text{or }}AB = \sqrt {{{\left( {2b} \right)}^2} + {{\left( { - 2a} \right)}^2}} \\
{\text{or }}AB = \sqrt {4{b^2} + 4{a^2}} \\
{\text{or }}AB = \sqrt {4\left( {{a^2} + {b^2}} \right)} \\
{\text{or }}AB = 2\sqrt {\left( {{a^2} + {b^2}} \right)} \\
$
Thus the distance between $A\left( {a + b,b - a} \right)$ and $B\left( {a - b,a + b} \right)$$ = 2\sqrt {\left( {{a^2} + {b^2}} \right)} $
Note: These types of questions can be solved by using distance formulas. In this question, we simply apply the distance formula between the given point and we get the distance between the points $A{\text{ and }}B$.
Recently Updated Pages
Which is the Longest Railway Platform in the world?

India Manned Space Mission Launch Target Month and Year 2025 Update

Which of the following pairs is correct?

The Turko-Afghan rule in India lasted for about?

In which state Jews are not considered minors?

What is Ornithophobia?

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

How many members did the Constituent Assembly of India class 10 social science CBSE

Write an application to the principal requesting five class 10 english CBSE

The Constitution of India was adopted on A 26 November class 10 social science CBSE

