Answer
Verified
474k+ views
Hint: In this question we will use distance formula to find the distance between two points. Distance formula, $d = \sqrt {{{\left( {{x_1} - {x_2}} \right)}^2} + {{\left( {{y_1} - {y_2}} \right)}^2}} $.
Complete step-by-step answer:
Now points given are,
$A\left( {a + b,b - a} \right)$ and $B\left( {a - b,a + b} \right)$
Distance Formula: The distance formula is used to determine the distance, $d$ , between two points. If the coordinates of the two points are $\left( {{x_1},{y_1}} \right)$ and $\left( {{x_2},{y_2}} \right)$, the distance equals the square root of $\left( {{x_1} - {x_2}} \right)$ squared $ + \left( {{y_1} - {y_2}} \right)$ squared.
$d = \sqrt {{{\left( {{x_1} - {x_2}} \right)}^2} + {{\left( {{y_1} - {y_2}} \right)}^2}} $
Now, the distance between $A$ and$B$ is determined by using the distance formula.
$
\Rightarrow {\text{ }}AB = \sqrt {{{\left( {\left( {a + b} \right) - \left( {a - b} \right)} \right)}^2} + {{\left( {\left( {b - a} \right) - \left( {a + b} \right)} \right)}^2}} \\
{\text{or }}AB = \sqrt {{{\left( {a + b - a + b} \right)}^2} + {{\left( {b - a - a - b} \right)}^2}} \\
{\text{or }}AB = \sqrt {{{\left( {2b} \right)}^2} + {{\left( { - 2a} \right)}^2}} \\
{\text{or }}AB = \sqrt {4{b^2} + 4{a^2}} \\
{\text{or }}AB = \sqrt {4\left( {{a^2} + {b^2}} \right)} \\
{\text{or }}AB = 2\sqrt {\left( {{a^2} + {b^2}} \right)} \\
$
Thus the distance between $A\left( {a + b,b - a} \right)$ and $B\left( {a - b,a + b} \right)$$ = 2\sqrt {\left( {{a^2} + {b^2}} \right)} $
Note: These types of questions can be solved by using distance formulas. In this question, we simply apply the distance formula between the given point and we get the distance between the points $A{\text{ and }}B$.
Complete step-by-step answer:
Now points given are,
$A\left( {a + b,b - a} \right)$ and $B\left( {a - b,a + b} \right)$
Distance Formula: The distance formula is used to determine the distance, $d$ , between two points. If the coordinates of the two points are $\left( {{x_1},{y_1}} \right)$ and $\left( {{x_2},{y_2}} \right)$, the distance equals the square root of $\left( {{x_1} - {x_2}} \right)$ squared $ + \left( {{y_1} - {y_2}} \right)$ squared.
$d = \sqrt {{{\left( {{x_1} - {x_2}} \right)}^2} + {{\left( {{y_1} - {y_2}} \right)}^2}} $
Now, the distance between $A$ and$B$ is determined by using the distance formula.
$
\Rightarrow {\text{ }}AB = \sqrt {{{\left( {\left( {a + b} \right) - \left( {a - b} \right)} \right)}^2} + {{\left( {\left( {b - a} \right) - \left( {a + b} \right)} \right)}^2}} \\
{\text{or }}AB = \sqrt {{{\left( {a + b - a + b} \right)}^2} + {{\left( {b - a - a - b} \right)}^2}} \\
{\text{or }}AB = \sqrt {{{\left( {2b} \right)}^2} + {{\left( { - 2a} \right)}^2}} \\
{\text{or }}AB = \sqrt {4{b^2} + 4{a^2}} \\
{\text{or }}AB = \sqrt {4\left( {{a^2} + {b^2}} \right)} \\
{\text{or }}AB = 2\sqrt {\left( {{a^2} + {b^2}} \right)} \\
$
Thus the distance between $A\left( {a + b,b - a} \right)$ and $B\left( {a - b,a + b} \right)$$ = 2\sqrt {\left( {{a^2} + {b^2}} \right)} $
Note: These types of questions can be solved by using distance formulas. In this question, we simply apply the distance formula between the given point and we get the distance between the points $A{\text{ and }}B$.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Difference Between Plant Cell and Animal Cell
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Write a letter to the principal requesting him to grant class 10 english CBSE
Change the following sentences into negative and interrogative class 10 english CBSE