Answer
Verified
424.5k+ views
Hint: Here we will first find the breadth of the rectangle by using the area of rectangle formula. Then we will draw our rectangle and form a triangle in it. Finally we will use Pythagora's theorem and substitute the values of length and breadth as perpendicular and base to find the diagonal and get the required answer.
Formula Used:
We will use the following formulas:
1. Area of rectangle \[ = l \times b\], where $l$ is the length of the rectangle and $b$ is the breadth of the rectangle
2. Pythagoras Theorem: ${{P}^{2}}+{{B}^{2}}={{H}^{2}}$, where \[P\] is the perpendicular, \[B\] is the base and \[H\] is the hypotenuse of the right angled triangle.
Complete step-by-step answer:
It is given that:
The length of the rectangle \[ = 16\] cm
The Area of the rectangle \[ = 192\] sq. cm
We know that Area of rectangle \[ = l \times b\]
Substituting these values in the above formula, we get
\[ \Rightarrow 192 =16 \times b\]
Dividing both sides by 16, we get
\[ \Rightarrow b = \dfrac{{192}}{{16}}\]
\[ \Rightarrow b = 12\] cm….\[\left( 1 \right)\]
Now, we will draw the rectangle by using the above data.
Now we will use Pythagoras theorem to find the length of the diagonal.
In $\vartriangle ABD$,
\[A{B^2} + A{D^2} = B{D^2}\]
Substituting the value from the diagram in above formula, we get
\[ \Rightarrow {\left( {16} \right)^2} + {\left( {12} \right)^2} = B{D^2}\]
Applying the exponent on the terms, we get
\[ \Rightarrow 256 + 144 = B{D^2}\]
Adding the terms, we get
\[ \Rightarrow B{D^2} = 400\]
Taking square root on both sides, we get
\[ \Rightarrow BD = \sqrt{400}\]
\[ \Rightarrow BD = 20 \] cm
So, we get the length of the diagonal as 20 cm.
Note:
Rectangle is a quadrilateral having four sides with four right angles. It is a special case of a parallelogram which has a pair of adjacent sides in a perpendicular angle. Some properties of a rectangle are:
1. It is cyclic as all corners lie on a single circle.
2. It is equiangular as the angles in all corners are equal.
3. It has two lines reflection symmetry and rotational symmetry which are in order 2.
Formula Used:
We will use the following formulas:
1. Area of rectangle \[ = l \times b\], where $l$ is the length of the rectangle and $b$ is the breadth of the rectangle
2. Pythagoras Theorem: ${{P}^{2}}+{{B}^{2}}={{H}^{2}}$, where \[P\] is the perpendicular, \[B\] is the base and \[H\] is the hypotenuse of the right angled triangle.
Complete step-by-step answer:
It is given that:
The length of the rectangle \[ = 16\] cm
The Area of the rectangle \[ = 192\] sq. cm
We know that Area of rectangle \[ = l \times b\]
Substituting these values in the above formula, we get
\[ \Rightarrow 192 =16 \times b\]
Dividing both sides by 16, we get
\[ \Rightarrow b = \dfrac{{192}}{{16}}\]
\[ \Rightarrow b = 12\] cm….\[\left( 1 \right)\]
Now, we will draw the rectangle by using the above data.
Now we will use Pythagoras theorem to find the length of the diagonal.
In $\vartriangle ABD$,
\[A{B^2} + A{D^2} = B{D^2}\]
Substituting the value from the diagram in above formula, we get
\[ \Rightarrow {\left( {16} \right)^2} + {\left( {12} \right)^2} = B{D^2}\]
Applying the exponent on the terms, we get
\[ \Rightarrow 256 + 144 = B{D^2}\]
Adding the terms, we get
\[ \Rightarrow B{D^2} = 400\]
Taking square root on both sides, we get
\[ \Rightarrow BD = \sqrt{400}\]
\[ \Rightarrow BD = 20 \] cm
So, we get the length of the diagonal as 20 cm.
Note:
Rectangle is a quadrilateral having four sides with four right angles. It is a special case of a parallelogram which has a pair of adjacent sides in a perpendicular angle. Some properties of a rectangle are:
1. It is cyclic as all corners lie on a single circle.
2. It is equiangular as the angles in all corners are equal.
3. It has two lines reflection symmetry and rotational symmetry which are in order 2.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Write a letter to the principal requesting him to grant class 10 english CBSE