
Find the cube root of $ \left(4^{\dfrac{17}{24}}\right) $ :
$ \left(a\right)4^{\dfrac{17}{48}} $
$ \left(b\right)4^{\dfrac{17}{36}} $
$ \left(c\right)2^{\dfrac{17}{48}} $
$ \left(d\right)2^{\dfrac{17}{36}} $
Answer
518.1k+ views
Hint: We are required to find the cube root of a number already given in powers. We will use the definition of cube root in this case. We will use the fact that the cube root of any number is the number raised to the power $ \dfrac{1}{3} $ . After that we will make some more modifications, so that the answer becomes equal to one of the options given.
Complete step by step answer:
Suppose we have a number $ a $ . We multiply this by itself three times. The number thus obtained will be $ a^3 $ . Suppose this number is equal to $ y $ .
$ \implies y=a^3 $
Then, $ y $ is said to be the cube of the number $ a $ . Now, if we take the power $ \dfrac{1}{3} $ on both sides then we obtain:
$ y^{\dfrac{1}{3}}=a $
So, $ a $ is said to be the cube root of $ y $ . So, if we want to find the cube root of a number, we simply raise it to the power $ \dfrac{1}{3} $ .
We have $ \left(4^{\dfrac{17}{24}}\right) $ . Raising it to the power of $ \dfrac{1}{3} $ , we get:
$ \left(4^{\dfrac{17}{24}}\right)^{\dfrac{1}{3}} $
We use the following formula that holds true for any three reals $ a $ , $ b $ and $ c $ :
$ \left(a^b\right)^c=a^{bc} $
We get:
$ \left(4^{\dfrac{17}{24}}\right)^{\dfrac{1}{3}}=4^{\dfrac{17}{24}\times\dfrac{1}{3}} $
Now, we know that $ 4=2^2 $ . Applying this here we get:
$ \left(4^{\dfrac{17}{24}}\right)^{\dfrac{1}{3}}=2^{2\times\dfrac{17}{24}\times\dfrac{1}{3}} $
$ =2^{\dfrac{17}{36}} $
So, the correct answer is “Option d”.
Note: Note that while you raise one power to another power you are supposed to multiply those powers. It is a common mistake to add those powers instead of multiplying while you raise one power to another. Also while multiplying, be aware because a calculation mistake while multiplying can lead to a wrong answer.
Complete step by step answer:
Suppose we have a number $ a $ . We multiply this by itself three times. The number thus obtained will be $ a^3 $ . Suppose this number is equal to $ y $ .
$ \implies y=a^3 $
Then, $ y $ is said to be the cube of the number $ a $ . Now, if we take the power $ \dfrac{1}{3} $ on both sides then we obtain:
$ y^{\dfrac{1}{3}}=a $
So, $ a $ is said to be the cube root of $ y $ . So, if we want to find the cube root of a number, we simply raise it to the power $ \dfrac{1}{3} $ .
We have $ \left(4^{\dfrac{17}{24}}\right) $ . Raising it to the power of $ \dfrac{1}{3} $ , we get:
$ \left(4^{\dfrac{17}{24}}\right)^{\dfrac{1}{3}} $
We use the following formula that holds true for any three reals $ a $ , $ b $ and $ c $ :
$ \left(a^b\right)^c=a^{bc} $
We get:
$ \left(4^{\dfrac{17}{24}}\right)^{\dfrac{1}{3}}=4^{\dfrac{17}{24}\times\dfrac{1}{3}} $
Now, we know that $ 4=2^2 $ . Applying this here we get:
$ \left(4^{\dfrac{17}{24}}\right)^{\dfrac{1}{3}}=2^{2\times\dfrac{17}{24}\times\dfrac{1}{3}} $
$ =2^{\dfrac{17}{36}} $
So, the correct answer is “Option d”.
Note: Note that while you raise one power to another power you are supposed to multiply those powers. It is a common mistake to add those powers instead of multiplying while you raise one power to another. Also while multiplying, be aware because a calculation mistake while multiplying can lead to a wrong answer.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Trending doubts
Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Which places in India experience sunrise first and class 9 social science CBSE

What is pollution? How many types of pollution? Define it

Name 10 Living and Non living things class 9 biology CBSE

What is the full form of pH?

