Answer
Verified
475.2k+ views
Hint: When we divide a third degree polynomial by a second degree polynomial we will get the quotient in first degree.
Let $f(x) = {x^3} + p{x^2} + qx + r$
Here, $f\left( x \right)$ is our dividend and we have to find the conditions for ${x^2} + ax + b$ to be the divisor.
When ${x^3} + p{x^2} + qx + r$ is divisible by ${x^2} + ax + b$ , Then the result will be in unit power of x.
Let result is x+n
$ \Rightarrow \frac{{{x^3} + p{x^2} + qx + r}}{{{x^2} + ax + b}} = x + n$
So
$ \Rightarrow x({x^2} + ax + b) + n({x^2} + ax + b) = {x^3} + p{x^2} + qx + r$
$ \Rightarrow {x^3} + a{x^2} + bx + n{x^2} + anx + bn = {x^3} + p{x^2} + qx + r$
Comparing the x powers on both sides, we get
$\eqalign{
& (a + n) = p...(i) \cr
& (b + an) = q...(ii) \cr
& bn = r...(iii) \cr} $
From equations (i) and (iii) we get $a,b$ values
$\eqalign{
& b = \frac{r}{n} \cr
& a = p - n \cr} $
Substituting $a,b$ in equation (ii)
$\frac{r}{n} + n(p - n) = q$
$ \Rightarrow np - {n^2} + \frac{r}{n} = q$, where n is real number
This $np - {n^2} + \frac{r}{n} = q$ is the required condition that ${x^3} + p{x^2} + qx + r$ is divisible by ${x^2} + ax + b$.
Note: Division of polynomials may look difficult, but it is very similar to the division of real numbers. Polynomial long division is a method for dividing a polynomial by another polynomial of a lower degree. If $P\left( x \right)$ and $D\left( x \right)$ are polynomials, with $D\left( x \right) \ne 0,$then there exist unique polynomial $Q(x)$ and $R(x),$ where $R(x)$ is either 0 or of degree less than the degree of $D(x)$ , such that
$\frac{{P(x)}}{{D(x)}} = Q(x) + \frac{{R(x)}}{{D(x)}}$ Or $P(x) = D(x).Q(x) + R(x)$
The polynomials $P\left( x \right)$ and $D\left( x \right)$ are called dividend and divisor respectively, $Q(x)$ is the quotient, and $R(x)$ is the remainder.
Let $f(x) = {x^3} + p{x^2} + qx + r$
Here, $f\left( x \right)$ is our dividend and we have to find the conditions for ${x^2} + ax + b$ to be the divisor.
When ${x^3} + p{x^2} + qx + r$ is divisible by ${x^2} + ax + b$ , Then the result will be in unit power of x.
Let result is x+n
$ \Rightarrow \frac{{{x^3} + p{x^2} + qx + r}}{{{x^2} + ax + b}} = x + n$
So
$ \Rightarrow x({x^2} + ax + b) + n({x^2} + ax + b) = {x^3} + p{x^2} + qx + r$
$ \Rightarrow {x^3} + a{x^2} + bx + n{x^2} + anx + bn = {x^3} + p{x^2} + qx + r$
Comparing the x powers on both sides, we get
$\eqalign{
& (a + n) = p...(i) \cr
& (b + an) = q...(ii) \cr
& bn = r...(iii) \cr} $
From equations (i) and (iii) we get $a,b$ values
$\eqalign{
& b = \frac{r}{n} \cr
& a = p - n \cr} $
Substituting $a,b$ in equation (ii)
$\frac{r}{n} + n(p - n) = q$
$ \Rightarrow np - {n^2} + \frac{r}{n} = q$, where n is real number
This $np - {n^2} + \frac{r}{n} = q$ is the required condition that ${x^3} + p{x^2} + qx + r$ is divisible by ${x^2} + ax + b$.
Note: Division of polynomials may look difficult, but it is very similar to the division of real numbers. Polynomial long division is a method for dividing a polynomial by another polynomial of a lower degree. If $P\left( x \right)$ and $D\left( x \right)$ are polynomials, with $D\left( x \right) \ne 0,$then there exist unique polynomial $Q(x)$ and $R(x),$ where $R(x)$ is either 0 or of degree less than the degree of $D(x)$ , such that
$\frac{{P(x)}}{{D(x)}} = Q(x) + \frac{{R(x)}}{{D(x)}}$ Or $P(x) = D(x).Q(x) + R(x)$
The polynomials $P\left( x \right)$ and $D\left( x \right)$ are called dividend and divisor respectively, $Q(x)$ is the quotient, and $R(x)$ is the remainder.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
At which age domestication of animals started A Neolithic class 11 social science CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Summary of the poem Where the Mind is Without Fear class 8 english CBSE
One cusec is equal to how many liters class 8 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE