Answer
Verified
490.2k+ views
Hint: For finding the coefficient of ${{\text{x}}^3}$, we have to first expand the given algebraic expression. The given algebraic expression is in the form of ${\left( {{\text{a + b + c}}} \right)^3}$. So to get the term of different powers, we have to expand this expression. After expanding, collect the terms with power 3.
Complete step-by-step answer:
In the question, we have to find the coefficient of ${{\text{x}}^3}$. The algebraic expression given is:
${\left( {1 + {\text{x + }}{{\text{x}}^2}} \right)^3}.$
Now to get the coefficient of ${{\text{x}}^3}$, we have to first expand the given expression.
The given algebraic expression is in the form of ${\left( {{\text{a + b + c}}} \right)^3}$ and we know that:
${\left( {{\text{a + b + c}}} \right)^3} = {{\text{a}}^3} + {{\text{b}}^3} + {{\text{c}}^3} + 3\left( {{\text{a + b}}} \right)\left( {{\text{b + c}}} \right)\left( {{\text{c + a}}} \right).$
Putting the value of a, b and c in the above identity, we get:
${(1 + {\text{x + }}{{\text{x}}^2})^3} = {1^3} + {{\text{x}}^3} + {({{\text{x}}^2})^3} + 3\left( {{\text{1 + x}}} \right)\left( {{\text{x + }}{{\text{x}}^2}} \right)\left( {{{\text{x}}^2}{\text{ + 1}}} \right)$
On further expanding the above expression, we get:
\[
{(1 + {\text{x + }}{{\text{x}}^2})^3} = {1^3} + {{\text{x}}^3} + {{\text{x}}^6} + 3\left( {{\text{1 + x}}} \right)\left( {{{\text{x}}^4} + {{\text{x}}^3} + {{\text{x}}^2} + {\text{x}}} \right) \\
{(1 + {\text{x + }}{{\text{x}}^2})^3} = 1 + {{\text{x}}^3} + {{\text{x}}^6} + 3\left( {{{\text{x}}^5} + 2{{\text{x}}^4} + 2{{\text{x}}^3} + 2{{\text{x}}^2} + {\text{x}}} \right) \\
{(1 + {\text{x + }}{{\text{x}}^2})^3} = 1 + {{\text{x}}^3} + {{\text{x}}^6} + 3{{\text{x}}^5} + 6{{\text{x}}^4} + 6{{\text{x}}^3} + 6{{\text{x}}^2} + 3{\text{x}} \\
{(1 + {\text{x + }}{{\text{x}}^2})^3} = {{\text{x}}^6} + 3{{\text{x}}^5} + 6{{\text{x}}^4} + 7{{\text{x}}^3} + 6{{\text{x}}^2} + 3{\text{x + 1}}{\text{.}} \\
{\text{So, the final expression that we get is}}:
\{{(1 + {\text{x + }}{{\text{x}}^2})^3} = {{\text{x}}^6} + 3{{\text{x}}^5} + 6{{\text{x}}^4} + 7{{\text{x}}^3} + 6{{\text{x}}^2} + 3{\text{x + 1}}\]----- (1)
In the algebraic expression given by equation 1:
The coefficient of ${{\text{x}}^3}$ is 7.
Note: In this type of question where the polynomial is not given in expanded form. We have to first expand the given algebraic expression into standard polynomial form using required algebraic identities. After this, collect the terms having power 3. Its coefficient will be the required answer.
Complete step-by-step answer:
In the question, we have to find the coefficient of ${{\text{x}}^3}$. The algebraic expression given is:
${\left( {1 + {\text{x + }}{{\text{x}}^2}} \right)^3}.$
Now to get the coefficient of ${{\text{x}}^3}$, we have to first expand the given expression.
The given algebraic expression is in the form of ${\left( {{\text{a + b + c}}} \right)^3}$ and we know that:
${\left( {{\text{a + b + c}}} \right)^3} = {{\text{a}}^3} + {{\text{b}}^3} + {{\text{c}}^3} + 3\left( {{\text{a + b}}} \right)\left( {{\text{b + c}}} \right)\left( {{\text{c + a}}} \right).$
Putting the value of a, b and c in the above identity, we get:
${(1 + {\text{x + }}{{\text{x}}^2})^3} = {1^3} + {{\text{x}}^3} + {({{\text{x}}^2})^3} + 3\left( {{\text{1 + x}}} \right)\left( {{\text{x + }}{{\text{x}}^2}} \right)\left( {{{\text{x}}^2}{\text{ + 1}}} \right)$
On further expanding the above expression, we get:
\[
{(1 + {\text{x + }}{{\text{x}}^2})^3} = {1^3} + {{\text{x}}^3} + {{\text{x}}^6} + 3\left( {{\text{1 + x}}} \right)\left( {{{\text{x}}^4} + {{\text{x}}^3} + {{\text{x}}^2} + {\text{x}}} \right) \\
{(1 + {\text{x + }}{{\text{x}}^2})^3} = 1 + {{\text{x}}^3} + {{\text{x}}^6} + 3\left( {{{\text{x}}^5} + 2{{\text{x}}^4} + 2{{\text{x}}^3} + 2{{\text{x}}^2} + {\text{x}}} \right) \\
{(1 + {\text{x + }}{{\text{x}}^2})^3} = 1 + {{\text{x}}^3} + {{\text{x}}^6} + 3{{\text{x}}^5} + 6{{\text{x}}^4} + 6{{\text{x}}^3} + 6{{\text{x}}^2} + 3{\text{x}} \\
{(1 + {\text{x + }}{{\text{x}}^2})^3} = {{\text{x}}^6} + 3{{\text{x}}^5} + 6{{\text{x}}^4} + 7{{\text{x}}^3} + 6{{\text{x}}^2} + 3{\text{x + 1}}{\text{.}} \\
{\text{So, the final expression that we get is}}:
\{{(1 + {\text{x + }}{{\text{x}}^2})^3} = {{\text{x}}^6} + 3{{\text{x}}^5} + 6{{\text{x}}^4} + 7{{\text{x}}^3} + 6{{\text{x}}^2} + 3{\text{x + 1}}\]----- (1)
In the algebraic expression given by equation 1:
The coefficient of ${{\text{x}}^3}$ is 7.
Note: In this type of question where the polynomial is not given in expanded form. We have to first expand the given algebraic expression into standard polynomial form using required algebraic identities. After this, collect the terms having power 3. Its coefficient will be the required answer.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE