# Find the coefficient of ${{\text{x}}^3}{\text{ in }}{\left( {1 + {\text{x + }}{{\text{x}}^2}} \right)^3}.$

Last updated date: 19th Mar 2023

•

Total views: 304.8k

•

Views today: 6.83k

Answer

Verified

304.8k+ views

Hint: For finding the coefficient of ${{\text{x}}^3}$, we have to first expand the given algebraic expression. The given algebraic expression is in the form of ${\left( {{\text{a + b + c}}} \right)^3}$. So to get the term of different powers, we have to expand this expression. After expanding, collect the terms with power 3.

Complete step-by-step answer:

In the question, we have to find the coefficient of ${{\text{x}}^3}$. The algebraic expression given is:

${\left( {1 + {\text{x + }}{{\text{x}}^2}} \right)^3}.$

Now to get the coefficient of ${{\text{x}}^3}$, we have to first expand the given expression.

The given algebraic expression is in the form of ${\left( {{\text{a + b + c}}} \right)^3}$ and we know that:

${\left( {{\text{a + b + c}}} \right)^3} = {{\text{a}}^3} + {{\text{b}}^3} + {{\text{c}}^3} + 3\left( {{\text{a + b}}} \right)\left( {{\text{b + c}}} \right)\left( {{\text{c + a}}} \right).$

Putting the value of a, b and c in the above identity, we get:

${(1 + {\text{x + }}{{\text{x}}^2})^3} = {1^3} + {{\text{x}}^3} + {({{\text{x}}^2})^3} + 3\left( {{\text{1 + x}}} \right)\left( {{\text{x + }}{{\text{x}}^2}} \right)\left( {{{\text{x}}^2}{\text{ + 1}}} \right)$

On further expanding the above expression, we get:

\[

{(1 + {\text{x + }}{{\text{x}}^2})^3} = {1^3} + {{\text{x}}^3} + {{\text{x}}^6} + 3\left( {{\text{1 + x}}} \right)\left( {{{\text{x}}^4} + {{\text{x}}^3} + {{\text{x}}^2} + {\text{x}}} \right) \\

{(1 + {\text{x + }}{{\text{x}}^2})^3} = 1 + {{\text{x}}^3} + {{\text{x}}^6} + 3\left( {{{\text{x}}^5} + 2{{\text{x}}^4} + 2{{\text{x}}^3} + 2{{\text{x}}^2} + {\text{x}}} \right) \\

{(1 + {\text{x + }}{{\text{x}}^2})^3} = 1 + {{\text{x}}^3} + {{\text{x}}^6} + 3{{\text{x}}^5} + 6{{\text{x}}^4} + 6{{\text{x}}^3} + 6{{\text{x}}^2} + 3{\text{x}} \\

{(1 + {\text{x + }}{{\text{x}}^2})^3} = {{\text{x}}^6} + 3{{\text{x}}^5} + 6{{\text{x}}^4} + 7{{\text{x}}^3} + 6{{\text{x}}^2} + 3{\text{x + 1}}{\text{.}} \\

{\text{So, the final expression that we get is}}:

\{{(1 + {\text{x + }}{{\text{x}}^2})^3} = {{\text{x}}^6} + 3{{\text{x}}^5} + 6{{\text{x}}^4} + 7{{\text{x}}^3} + 6{{\text{x}}^2} + 3{\text{x + 1}}\]----- (1)

In the algebraic expression given by equation 1:

The coefficient of ${{\text{x}}^3}$ is 7.

Note: In this type of question where the polynomial is not given in expanded form. We have to first expand the given algebraic expression into standard polynomial form using required algebraic identities. After this, collect the terms having power 3. Its coefficient will be the required answer.

Complete step-by-step answer:

In the question, we have to find the coefficient of ${{\text{x}}^3}$. The algebraic expression given is:

${\left( {1 + {\text{x + }}{{\text{x}}^2}} \right)^3}.$

Now to get the coefficient of ${{\text{x}}^3}$, we have to first expand the given expression.

The given algebraic expression is in the form of ${\left( {{\text{a + b + c}}} \right)^3}$ and we know that:

${\left( {{\text{a + b + c}}} \right)^3} = {{\text{a}}^3} + {{\text{b}}^3} + {{\text{c}}^3} + 3\left( {{\text{a + b}}} \right)\left( {{\text{b + c}}} \right)\left( {{\text{c + a}}} \right).$

Putting the value of a, b and c in the above identity, we get:

${(1 + {\text{x + }}{{\text{x}}^2})^3} = {1^3} + {{\text{x}}^3} + {({{\text{x}}^2})^3} + 3\left( {{\text{1 + x}}} \right)\left( {{\text{x + }}{{\text{x}}^2}} \right)\left( {{{\text{x}}^2}{\text{ + 1}}} \right)$

On further expanding the above expression, we get:

\[

{(1 + {\text{x + }}{{\text{x}}^2})^3} = {1^3} + {{\text{x}}^3} + {{\text{x}}^6} + 3\left( {{\text{1 + x}}} \right)\left( {{{\text{x}}^4} + {{\text{x}}^3} + {{\text{x}}^2} + {\text{x}}} \right) \\

{(1 + {\text{x + }}{{\text{x}}^2})^3} = 1 + {{\text{x}}^3} + {{\text{x}}^6} + 3\left( {{{\text{x}}^5} + 2{{\text{x}}^4} + 2{{\text{x}}^3} + 2{{\text{x}}^2} + {\text{x}}} \right) \\

{(1 + {\text{x + }}{{\text{x}}^2})^3} = 1 + {{\text{x}}^3} + {{\text{x}}^6} + 3{{\text{x}}^5} + 6{{\text{x}}^4} + 6{{\text{x}}^3} + 6{{\text{x}}^2} + 3{\text{x}} \\

{(1 + {\text{x + }}{{\text{x}}^2})^3} = {{\text{x}}^6} + 3{{\text{x}}^5} + 6{{\text{x}}^4} + 7{{\text{x}}^3} + 6{{\text{x}}^2} + 3{\text{x + 1}}{\text{.}} \\

{\text{So, the final expression that we get is}}:

\{{(1 + {\text{x + }}{{\text{x}}^2})^3} = {{\text{x}}^6} + 3{{\text{x}}^5} + 6{{\text{x}}^4} + 7{{\text{x}}^3} + 6{{\text{x}}^2} + 3{\text{x + 1}}\]----- (1)

In the algebraic expression given by equation 1:

The coefficient of ${{\text{x}}^3}$ is 7.

Note: In this type of question where the polynomial is not given in expanded form. We have to first expand the given algebraic expression into standard polynomial form using required algebraic identities. After this, collect the terms having power 3. Its coefficient will be the required answer.

Recently Updated Pages

If a spring has a period T and is cut into the n equal class 11 physics CBSE

A planet moves around the sun in nearly circular orbit class 11 physics CBSE

In any triangle AB2 BC4 CA3 and D is the midpoint of class 11 maths JEE_Main

In a Delta ABC 2asin dfracAB+C2 is equal to IIT Screening class 11 maths JEE_Main

If in aDelta ABCangle A 45circ angle C 60circ then class 11 maths JEE_Main

If in a triangle rmABC side a sqrt 3 + 1rmcm and angle class 11 maths JEE_Main

Trending doubts

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Epipetalous and syngenesious stamens occur in aSolanaceae class 11 biology CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

A Short Paragraph on our Country India