
Find the circumcenter of the triangle whose vertices are $$( - 2, - 3),( - 1,0),( - 7, - 6).$$
Answer
514.8k+ views
Hint: From circumcenter to vertices of triangle are equidistant.So,we have to equate the distances from circumcentre to vertices of triangle.
Let $$A( - 2, - 3),B( - 1,0),C( - 7, - 6)$$ be the vertices of the triangle and $P(x,y)$ be the required circumcenter. Also, $P{A^2} = P{B^2} = P{C^2}$
Formula for finding distance between two points$\left( {{x_1},{y_1}} \right),\left( {{x_2},{y_2}} \right)$ $ = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} $
Distance between Points P and A is
$$PA = \sqrt {{{(x - ( - 2))}^2} + {{(y - ( - 1))}^2}} $$
$ \Rightarrow P{A^2} = {(x + 2)^2} + {(y + 1)^2}$
$ \Rightarrow P{A^2} = {x^2} + 4 + 4x + {y^2} + 9 + 6y$ .... (1)
Distance between Points P and B is
$PB = \sqrt {{{(x - ( - 1))}^2} + {{(y - 0)}^2}} $
$ \Rightarrow P{B^2} = {(x + 1)^2} + {y^2}$
$ \Rightarrow P{B^2} = {x^2} + 1 + 2x + {y^2}$ .... (2)
Distance between Points P and C is
$PC = \sqrt {{{(x - 7)}^2} + {{(y - ( - 6))}^2}} $
$ \Rightarrow P{C^2} = {(x - 7)^2} + {(y + 6)^2}$
$ \Rightarrow P{C^2} = {x^2} + 49 - 14x + {y^2} + 36 + 12y$.... (3)
From equations (1) and (2) we make PA = PB
${x^2} + 4x + {y^2} + 6y + 13 = {x^2} + 2x + {y^2} + 1$
$ \Rightarrow 4x + 6y + 13 = 1 + 2x$
$ \Rightarrow 2x + 6y + 12 = 0$
$ \Rightarrow x + 3y + 6 = 0$ ... (4)
From equations (2) and (3) we make PB = PC
${x^2} + 1 + 2x + {y^2} = {x^2} - 14x + {y^2} + 12y + 85$
$ \Rightarrow 2x - 12y + 14x = 84$
$ \Rightarrow 16x - 12y = 84$
$ \Rightarrow 4x - 3y = 21$
From equation (4) we can put $x = - 3y - 6$
$ \Rightarrow 4( - 3y - 6) - 3y = 21$
$\eqalign{
& \Rightarrow - 12y - 24 - 3y = 21 \cr
& \Rightarrow 15y = - 45 \cr} $
$ \Rightarrow y = \frac{{ - 45}}{{15}} = - 3$
$ \Rightarrow x = - 3( - 3) - 6 = 3$
We got x, y values which are coordinates of the circumference.
$\therefore $The vertices of circumcenter = (3, -3)
Note: The circumcenter of a triangle is a point where the perpendicular bisector of the sides of that particular triangle. That means the circumcenter is equidistant from each vertex of the triangle. It can be inside or outside of the triangle based on the type of triangle.
Let $$A( - 2, - 3),B( - 1,0),C( - 7, - 6)$$ be the vertices of the triangle and $P(x,y)$ be the required circumcenter. Also, $P{A^2} = P{B^2} = P{C^2}$
Formula for finding distance between two points$\left( {{x_1},{y_1}} \right),\left( {{x_2},{y_2}} \right)$ $ = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} $
Distance between Points P and A is
$$PA = \sqrt {{{(x - ( - 2))}^2} + {{(y - ( - 1))}^2}} $$
$ \Rightarrow P{A^2} = {(x + 2)^2} + {(y + 1)^2}$
$ \Rightarrow P{A^2} = {x^2} + 4 + 4x + {y^2} + 9 + 6y$ .... (1)
Distance between Points P and B is
$PB = \sqrt {{{(x - ( - 1))}^2} + {{(y - 0)}^2}} $
$ \Rightarrow P{B^2} = {(x + 1)^2} + {y^2}$
$ \Rightarrow P{B^2} = {x^2} + 1 + 2x + {y^2}$ .... (2)
Distance between Points P and C is
$PC = \sqrt {{{(x - 7)}^2} + {{(y - ( - 6))}^2}} $
$ \Rightarrow P{C^2} = {(x - 7)^2} + {(y + 6)^2}$
$ \Rightarrow P{C^2} = {x^2} + 49 - 14x + {y^2} + 36 + 12y$.... (3)
From equations (1) and (2) we make PA = PB
${x^2} + 4x + {y^2} + 6y + 13 = {x^2} + 2x + {y^2} + 1$
$ \Rightarrow 4x + 6y + 13 = 1 + 2x$
$ \Rightarrow 2x + 6y + 12 = 0$
$ \Rightarrow x + 3y + 6 = 0$ ... (4)
From equations (2) and (3) we make PB = PC
${x^2} + 1 + 2x + {y^2} = {x^2} - 14x + {y^2} + 12y + 85$
$ \Rightarrow 2x - 12y + 14x = 84$
$ \Rightarrow 16x - 12y = 84$
$ \Rightarrow 4x - 3y = 21$
From equation (4) we can put $x = - 3y - 6$
$ \Rightarrow 4( - 3y - 6) - 3y = 21$
$\eqalign{
& \Rightarrow - 12y - 24 - 3y = 21 \cr
& \Rightarrow 15y = - 45 \cr} $
$ \Rightarrow y = \frac{{ - 45}}{{15}} = - 3$
$ \Rightarrow x = - 3( - 3) - 6 = 3$
We got x, y values which are coordinates of the circumference.
$\therefore $The vertices of circumcenter = (3, -3)
Note: The circumcenter of a triangle is a point where the perpendicular bisector of the sides of that particular triangle. That means the circumcenter is equidistant from each vertex of the triangle. It can be inside or outside of the triangle based on the type of triangle.
Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE

The area of a 6m wide road outside a garden in all class 10 maths CBSE

What is the electric flux through a cube of side 1 class 10 physics CBSE

If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE

The radius and height of a cylinder are in the ratio class 10 maths CBSE

An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE

Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Why is there a time difference of about 5 hours between class 10 social science CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

What constitutes the central nervous system How are class 10 biology CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

Explain the Treaty of Vienna of 1815 class 10 social science CBSE
