Find the centre and radius of the sphere \[{\vec r^2} - \,\vec r.(4\vec i + 2\vec j - 6\vec k) - 11 = 0\]
Answer
Verified
476.7k+ views
Hint: A sphere with center \[\left( {a,b,c} \right)\] and radius r has the equation \[\left( {x - a} \right){\text{ }} + {\text{ }}\left( {y - b} \right){\text{ }} + {\text{ }}{\left( {z - c} \right)^2} = {r^2}\]
Or x2 + y2 +z2 + 2ux + 2vy + 2wz+d=0
Where center of sphere is y\[ = {\text{ }}\left( { - u, - v, - w} \right)\]
And radius of sphere is
= \[\sqrt {{u^2} + {v^2} + {w^2} - d} \]
Complete step by step answer:
Let
\[\vec r = x\vec i + j\vec y + z\vec k\,\], and \[r = \sqrt {{x^2} + {y^2} + {z^2}} \]
\[ = {r^2} = {x^2} + {y^2} + {z^2}\] [squaring both sides]
Now dot product of \[\vec r.(4\vec i + 2\vec j - 6\vec k)\]is:
\[ = 4\vec r.\vec i + 2\vec r.\vec j - 6\vec r.\vec k\]
\[ = 4x + 2y - 6z\]----(2) \[[\vec r.\vec i = x,\,\,\vec r.\vec j = y,\,\vec r.\vec k = z]\]
Our given equation is,
\[{\vec r^2} + \vec r.(4\vec i + 2\vec j - 6\vec k) - 11 = 0\]-----(3)
Using value of 1 and 2 in equation 3
\[{x^2} + {y^2} + {z^2} - (4x + 2y - 6z) - 11 = 0\]
\[{x^2} + {y^2} + {z^2} - 4x + 2y - 6z - 11 = 0\]
General equation of the sphere is
\[{x^2} + {y^2} + {z^2} + 2ux + 2vy{\text{ }} + 2wz + d{\text{ }} = 0\;\;\;\;\;\;\;\;\;\]----(5)
On comparing 4 with 5, we get;
\[2u = - 4,{\text{ }}2v = - 2,2w = 6\]and \[d = - 11\]
= \[u{\text{ }} - \] \[\dfrac{4}{2} = - 2,v = - \dfrac{2}{2} = 1,w = \dfrac{6}{2} = 3and\] \[d = - 1\]
\[u = - 2v = - 1,w = 3and\] \[d = - 11\]
Center \[ = \left( {{\text{ }} - u{\text{ }},v, - w} \right)\;\]\[ = \]\[\left( { - ( - 2)} \right), - \left( { - 1} \right), - 3\])
\[ = \left( {2,{\text{ }}1, - 3} \right)\]
And radius \[ = \] \[\sqrt {{u^2} + {v^2} + {w^2} - d} \]
Put \[u = {\text{ }} - 2,v = {\text{ }} - 1,{\text{ }}w = 3\]and \[d = {\text{ }} - 11\]
\[ = \sqrt {{{( - 2)}^2} + {{( - 1)}^2} + {{(3)}^2} + 11} \]
\[ = \sqrt {4 + 1 + 9 + 11} \]
\[ = \sqrt {14 + 11} \]
\[ = \sqrt {25} \]
\[ = 5\]
Hence, are the center and radius of sphere.
Note: a sphere is a three-dimension shape and it is mathematically defined as a set of points from the given point called “center” with an equal distance called radius “r” in the three-dimensional space of Euclidean space. The diameter “d’ is twice the radius. The pair of points that connect the opposite sides of a sphere is called “antipodes”. The sphere is sometimes interchangeably called “ball”.
The important properties of the sphere are:
A sphere is perfectly symmetrical.
It is not a polyhedron.
All the points on the surface are equidistant from the center.
It does not have a surface of centers.
It has constant mean curvature.
It has a constant width and circumference.
“while comparing the equation with the general equation we must take care of the signs”.
Or x2 + y2 +z2 + 2ux + 2vy + 2wz+d=0
Where center of sphere is y\[ = {\text{ }}\left( { - u, - v, - w} \right)\]
And radius of sphere is
= \[\sqrt {{u^2} + {v^2} + {w^2} - d} \]
Complete step by step answer:
Let
\[\vec r = x\vec i + j\vec y + z\vec k\,\], and \[r = \sqrt {{x^2} + {y^2} + {z^2}} \]
\[ = {r^2} = {x^2} + {y^2} + {z^2}\] [squaring both sides]
Now dot product of \[\vec r.(4\vec i + 2\vec j - 6\vec k)\]is:
\[ = 4\vec r.\vec i + 2\vec r.\vec j - 6\vec r.\vec k\]
\[ = 4x + 2y - 6z\]----(2) \[[\vec r.\vec i = x,\,\,\vec r.\vec j = y,\,\vec r.\vec k = z]\]
Our given equation is,
\[{\vec r^2} + \vec r.(4\vec i + 2\vec j - 6\vec k) - 11 = 0\]-----(3)
Using value of 1 and 2 in equation 3
\[{x^2} + {y^2} + {z^2} - (4x + 2y - 6z) - 11 = 0\]
\[{x^2} + {y^2} + {z^2} - 4x + 2y - 6z - 11 = 0\]
General equation of the sphere is
\[{x^2} + {y^2} + {z^2} + 2ux + 2vy{\text{ }} + 2wz + d{\text{ }} = 0\;\;\;\;\;\;\;\;\;\]----(5)
On comparing 4 with 5, we get;
\[2u = - 4,{\text{ }}2v = - 2,2w = 6\]and \[d = - 11\]
= \[u{\text{ }} - \] \[\dfrac{4}{2} = - 2,v = - \dfrac{2}{2} = 1,w = \dfrac{6}{2} = 3and\] \[d = - 1\]
\[u = - 2v = - 1,w = 3and\] \[d = - 11\]
Center \[ = \left( {{\text{ }} - u{\text{ }},v, - w} \right)\;\]\[ = \]\[\left( { - ( - 2)} \right), - \left( { - 1} \right), - 3\])
\[ = \left( {2,{\text{ }}1, - 3} \right)\]
And radius \[ = \] \[\sqrt {{u^2} + {v^2} + {w^2} - d} \]
Put \[u = {\text{ }} - 2,v = {\text{ }} - 1,{\text{ }}w = 3\]and \[d = {\text{ }} - 11\]
\[ = \sqrt {{{( - 2)}^2} + {{( - 1)}^2} + {{(3)}^2} + 11} \]
\[ = \sqrt {4 + 1 + 9 + 11} \]
\[ = \sqrt {14 + 11} \]
\[ = \sqrt {25} \]
\[ = 5\]
Hence, are the center and radius of sphere.
Note: a sphere is a three-dimension shape and it is mathematically defined as a set of points from the given point called “center” with an equal distance called radius “r” in the three-dimensional space of Euclidean space. The diameter “d’ is twice the radius. The pair of points that connect the opposite sides of a sphere is called “antipodes”. The sphere is sometimes interchangeably called “ball”.
The important properties of the sphere are:
A sphere is perfectly symmetrical.
It is not a polyhedron.
All the points on the surface are equidistant from the center.
It does not have a surface of centers.
It has constant mean curvature.
It has a constant width and circumference.
“while comparing the equation with the general equation we must take care of the signs”.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success
Master Class 10 Computer Science: Engaging Questions & Answers for Success
Master Class 10 Science: Engaging Questions & Answers for Success
Master Class 10 Social Science: Engaging Questions & Answers for Success
Master Class 10 Maths: Engaging Questions & Answers for Success
Master Class 10 English: Engaging Questions & Answers for Success
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
The capital of British India was transferred from Calcutta class 10 social science CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE