
Find the average of first 20 multiples of 7.
$\left( a \right){\text{ 83}}{\text{.5}}$
$\left( b \right){\text{ 73}}{\text{.5}}$
$\left( c \right){\text{ 63}}{\text{.5}}$
$\left( d \right){\text{ 53}}{\text{.5}}$
Answer
550.2k+ views
Hint: For solving this question, we will first see the first $20$ multiples of $7$. Now we will calculate the sum of the first $n$ numbers by using the formula $\dfrac{{n\left( {n + 1} \right)}}{2}$ and then by using the average formula which will be given by $Average = \dfrac{{Sum{\text{ of all the numbers}}}}{{Total{\text{ number of terms}}}}$ . And by using this formula we will substitute it and we will get the value.
Formula used:
The average formula is given by,
$Average = \dfrac{{Sum{\text{ of all the numbers}}}}{{Total{\text{ number of terms}}}}$
Sum of first $n$ numbers,
$\dfrac{{n\left( {n + 1} \right)}}{2}$
Here, $n$ will be the number of terms.
Complete step-by-step answer:
First of all we will find the first $20$ multiples of $7$ . So the multiples will be,
$7 \times 1,7 \times 2,7 \times 3,.......,7 \times 20$ .
So the average will be calculated as
$ \Rightarrow Average = \dfrac{{Sum{\text{ of all the numbers}}}}{{Total{\text{ number of terms}}}}$
Taking the term $7$ common from the numerator, we get
$ \Rightarrow \dfrac{{7\left( {1 + 2 + 3 + 4 + ..... + 20} \right)}}{{20}}$
And as we know the formula for calculating the sum of $n$ numbers by using the formula $\dfrac{{n\left( {n + 1} \right)}}{2}$ .
So on substituting the values, we get
$ \Rightarrow \dfrac{{7\left[ {20\left( {20 + 1} \right)} \right]}}{{2 \times 20}}$
And on solving the brace, we get the equation as
$ \Rightarrow \dfrac{{7 \times 20 \times 21}}{{2 \times 20}}$
And on solving the numerator and the denominator, we get the equation as
$ \Rightarrow \dfrac{{147}}{2}$
And after dividing it, we get
$ \Rightarrow 73.5$
Therefore, the average of first $20$ multiples of $7$ is $73.5$ .
Hence, the option $\left( b \right)$ is correct.
Note: This question can also be calculated by using another method. In this, we will use only one formula, and the formula is given by $\dfrac{n}{2}\left( {2a + \left( {n - 1} \right)d} \right)$ . This is the formula for the sum of $n$ terms. We have the $a$ which will be the first term and in this question it is $7$ and the common difference will be given by $d$ which will be equal to $7$. So by substituting the values in the formula we will get the answer the same as we had got. So in this way also we can solve it.
Formula used:
The average formula is given by,
$Average = \dfrac{{Sum{\text{ of all the numbers}}}}{{Total{\text{ number of terms}}}}$
Sum of first $n$ numbers,
$\dfrac{{n\left( {n + 1} \right)}}{2}$
Here, $n$ will be the number of terms.
Complete step-by-step answer:
First of all we will find the first $20$ multiples of $7$ . So the multiples will be,
$7 \times 1,7 \times 2,7 \times 3,.......,7 \times 20$ .
So the average will be calculated as
$ \Rightarrow Average = \dfrac{{Sum{\text{ of all the numbers}}}}{{Total{\text{ number of terms}}}}$
Taking the term $7$ common from the numerator, we get
$ \Rightarrow \dfrac{{7\left( {1 + 2 + 3 + 4 + ..... + 20} \right)}}{{20}}$
And as we know the formula for calculating the sum of $n$ numbers by using the formula $\dfrac{{n\left( {n + 1} \right)}}{2}$ .
So on substituting the values, we get
$ \Rightarrow \dfrac{{7\left[ {20\left( {20 + 1} \right)} \right]}}{{2 \times 20}}$
And on solving the brace, we get the equation as
$ \Rightarrow \dfrac{{7 \times 20 \times 21}}{{2 \times 20}}$
And on solving the numerator and the denominator, we get the equation as
$ \Rightarrow \dfrac{{147}}{2}$
And after dividing it, we get
$ \Rightarrow 73.5$
Therefore, the average of first $20$ multiples of $7$ is $73.5$ .
Hence, the option $\left( b \right)$ is correct.
Note: This question can also be calculated by using another method. In this, we will use only one formula, and the formula is given by $\dfrac{n}{2}\left( {2a + \left( {n - 1} \right)d} \right)$ . This is the formula for the sum of $n$ terms. We have the $a$ which will be the first term and in this question it is $7$ and the common difference will be given by $d$ which will be equal to $7$. So by substituting the values in the formula we will get the answer the same as we had got. So in this way also we can solve it.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

