Answer

Verified

456.6k+ views

**Hint:**A quadrilateral is a polygon having four sides and four vertexes represented on a 2-d geometrical plane. A quadrilateral is also known as a quadrangle, tetragon, and 4-gon. There are basically five basic types of a quadrilateral which differ from each other in respect to the length of the sides and measure of an angle, but they all have four sides, and four vertices are names as Square, Rectangle, Rhombus, Parallelogram, and Trapezoid.

Coordinate of a vertex is the 2-dimensional representation of a point given as\[M\left( {x,y} \right)\], where \[x\]represents the x-coordinates and \[y\]represents the y-coordinates. The area of a quadrilateral polygon is the space occupied by the flat polygon.

In this question, four coordinates of a quadrilateral have been given from which we need to find the area of the quadrilateral. Here, we have divided the quadrilateral into two triangles, and the area of the quadrilateral is the sum of the two triangles.

**Complete step by step answer:**

Given the coordinates of the quadrilateral are: A(-2,-2), B(5,1), C(2,4), D(-1,5)

We can write the vertex as

\[

A\left( { - 2, - 2} \right) \to A\left( {{x_1},{y_1}} \right) \\

B\left( {5,1} \right) \to B\left( {{x_2},{y_2}} \right) \\

C\left( {2,4} \right) \to C\left( {{x_3},{y_3}} \right) \\

D\left( { - 1,5} \right) \to D\left( {{x_4},{y_4}} \right) \\

\]

Now draw a diagonal AC which divides the quadrilateral into two triangles ABC and ADC

Hence find the area of the triangles ABC and ADC,

\[

\vartriangle ABC = \dfrac{1}{2}\left[ {{x_1}\left( {{y_2} - {y_3}} \right) + {x_2}\left( {{y_3} - {y_1}} \right) + {x_3}\left( {y{}_1 - {y_2}} \right)} \right] \\

= \dfrac{1}{2}\left[ { - 2\left( {1 - 4} \right) + 5\left( {4 - \left( { - 2} \right)} \right) + 2\left( { - 2 - 1} \right)} \right] \\

= \dfrac{1}{2}\left[ { - 2\left( { - 3} \right) + 5\left( 6 \right) + 2\left( { - 3} \right)} \right] \\

= \dfrac{1}{2}\left[ { + 6 + 30 - 6} \right] \\

= \dfrac{1}{2} \times 30 \\

= 15 \\

\]

\[

\vartriangle ACD = \dfrac{1}{2}\left[ {{x_1}\left( {{y_3} - {y_4}} \right) + {x_3}\left( {{y_4} - {y_1}} \right) + {x_4}\left( {{y_1} - {y_3}} \right)} \right] \\

= \dfrac{1}{2}\left[ { - 2\left( {4 - 5} \right) + 2\left( {5 - \left( { - 2} \right)} \right) + \left( { - 1} \right)\left( { - 2 - 4} \right)} \right] \\

= \dfrac{1}{2}\left[ { - 2\left( { - 1} \right) + 2\left( 7 \right) + \left( { - 1} \right)\left( { - 6} \right)} \right] \\

= \dfrac{1}{2}\left[ {2 + 14 + 6} \right] \\

= \dfrac{{22}}{2} \\

= 11 \\

\]

Hence the area of the quadrilateral will be the sum of the area of triangle ABC and the area of triangle ACD

\[\vartriangle ABC + \vartriangle ACD = 15 + 11 = 26\] Square units

**Note:**

We can also find the area of the quadrilateral by finding the length of the sides by using the distance formulae, which will be helpful in determining the type of quadrilateral the polygon id, and hence the formulae will be used accordingly.

Recently Updated Pages

what is the correct chronological order of the following class 10 social science CBSE

Which of the following was not the actual cause for class 10 social science CBSE

Which of the following statements is not correct A class 10 social science CBSE

Which of the following leaders was not present in the class 10 social science CBSE

Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE

Which one of the following places is not covered by class 10 social science CBSE

Trending doubts

Which are the Top 10 Largest Countries of the World?

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

How do you graph the function fx 4x class 9 maths CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE