
Find the area of the ellipse: \[\frac{{{x^2}}}{4} + \frac{{{y^2}}}{9} = 1\]
Answer
622.8k+ views
Hint:To find the area of the ellipse, we will convert the given equation in terms of y and then integrate the region under the graph.
Here, the first step is to convert the given equation in terms of $y$.
Therefore the above equation can be written as,
\[\frac{{{y^2}}}{9} = 1 - \frac{{{x^2}}}{4}\]
If we solve it further, we get,
\[{y^2} = 9\left( {\frac{{4 - {x^2}}}{4}} \right)\]
\[y = \frac{3}{2}\left( {\sqrt {4 - {x^2}} } \right)\]
Now the next step is to use the formula of area of ellipse which is
Area of ellipse \[4\](area of region\[OAB\])
=\[4\int\limits_0^2 {ydx} \]
Note: Make sure you take the right limits.
We are going to equate the value of y.
=\[4\int\limits_0^2 {\frac{3}{2}\left( {\sqrt {4 - {x^2}} } \right)dx} \]
Now we take the constant out of the integration. And we convert \[\sqrt {4 - {x^2}} \]to a general form of \[\sqrt {{a^2} - {x^2}} \].Therefore we get,
=\[4\left( {\frac{3}{2}} \right)\int\limits_0^2 {\left( {\sqrt {{2^2} - {x^2}} } \right)dx} \]
We know that the integration of \[\sqrt {{a^2} - {x^2}} \] is equal to \[\frac{{x\sqrt {{a^2} - {x^2}} }}{2} + \frac{{{a^2}}}{2}{\sin ^{ - 1}}\left( {\frac{x}{a}} \right) + c\]
Therefore,
=\[6\left[ {\frac{1}{2} \times \sqrt {4 - {x^2}} + \frac{1}{2}\left( 4 \right){{\sin }^{ - 1}}\left( {\frac{x}{2}} \right)} \right]\]
=\[\frac{6}{2}\left[ {0 + 4{{\sin }^{ - 1}}\left( {\frac{2}{2}} \right)} \right]\]
=\[3\left[ {4{{\sin }^{ - 1}}\left( 1 \right)} \right]\]
=\[12\left( {\frac{\pi }{2}} \right)\]
Answer =\[6\pi \]
Here, the first step is to convert the given equation in terms of $y$.
Therefore the above equation can be written as,
\[\frac{{{y^2}}}{9} = 1 - \frac{{{x^2}}}{4}\]
If we solve it further, we get,
\[{y^2} = 9\left( {\frac{{4 - {x^2}}}{4}} \right)\]
\[y = \frac{3}{2}\left( {\sqrt {4 - {x^2}} } \right)\]
Now the next step is to use the formula of area of ellipse which is
Area of ellipse \[4\](area of region\[OAB\])
=\[4\int\limits_0^2 {ydx} \]
Note: Make sure you take the right limits.
We are going to equate the value of y.
=\[4\int\limits_0^2 {\frac{3}{2}\left( {\sqrt {4 - {x^2}} } \right)dx} \]
Now we take the constant out of the integration. And we convert \[\sqrt {4 - {x^2}} \]to a general form of \[\sqrt {{a^2} - {x^2}} \].Therefore we get,
=\[4\left( {\frac{3}{2}} \right)\int\limits_0^2 {\left( {\sqrt {{2^2} - {x^2}} } \right)dx} \]
We know that the integration of \[\sqrt {{a^2} - {x^2}} \] is equal to \[\frac{{x\sqrt {{a^2} - {x^2}} }}{2} + \frac{{{a^2}}}{2}{\sin ^{ - 1}}\left( {\frac{x}{a}} \right) + c\]
Therefore,
=\[6\left[ {\frac{1}{2} \times \sqrt {4 - {x^2}} + \frac{1}{2}\left( 4 \right){{\sin }^{ - 1}}\left( {\frac{x}{2}} \right)} \right]\]
=\[\frac{6}{2}\left[ {0 + 4{{\sin }^{ - 1}}\left( {\frac{2}{2}} \right)} \right]\]
=\[3\left[ {4{{\sin }^{ - 1}}\left( 1 \right)} \right]\]
=\[12\left( {\frac{\pi }{2}} \right)\]
Answer =\[6\pi \]
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

