Answer
Verified
467.1k+ views
Hint:.The arc is any portion of the circumference of a circle. Arc length is the distance from one endpoint of the arc to the other point. Use an equation to find arc length \[=2\pi r\left( \dfrac{\theta }{360} \right)\].
Complete step-by-step answer:
Given that the radius of the circle = a
We need to find the angle subtended by arc length \[\left( \dfrac{a\pi }{4} \right)\]
From the figure it is clear that the length of arc is\[\Rightarrow \dfrac{a\pi }{4}\]
We need to find \[\theta \].
The formula for finding the arc length is given by
\[\Rightarrow \]arc length\[=2\pi r\left( \dfrac{\theta }{360} \right)\]
We can find the arc length or portion of the arc in the circumference, if we know at what portion of 360 degrees the arc’s central angle is.
Arc length\[=2\pi r\left( \dfrac{\theta }{360} \right)\], where r is the radius of the circle.
\[\therefore 2\pi r\left( \dfrac{\theta }{360} \right)=\dfrac{a\pi }{4}\]
We have been given arc length\[=\dfrac{a\pi }{4}\]
Put radius, r = a
\[\Rightarrow 2\pi a\left( \dfrac{\theta }{360} \right)=\dfrac{a\pi }{4}\]
Simplifying the above equation,
\[\begin{align}
& 2\pi a\left( \dfrac{\theta }{360} \right)=\dfrac{a}{4}\pi \\
& \Rightarrow \dfrac{\theta }{360}=\dfrac{1}{8}\Rightarrow \theta =\dfrac{360}{8}={{45}^{\circ }} \\
\end{align}\]
\[\therefore \]We get the angle subtended at the center of the circle\[={{45}^{\circ }}\]
Note: Here, arc length \[=\dfrac{a\pi }{4}\]
If we assume value of \[\theta ={{45}^{\circ }}\]and applying we get
\[\begin{align}
& =2\pi a\left( \dfrac{45}{360} \right) \\
& =2\pi a\left( \dfrac{1}{8} \right)=\dfrac{a\pi }{4} \\
\end{align}\]
Complete step-by-step answer:
Given that the radius of the circle = a
We need to find the angle subtended by arc length \[\left( \dfrac{a\pi }{4} \right)\]
From the figure it is clear that the length of arc is\[\Rightarrow \dfrac{a\pi }{4}\]
We need to find \[\theta \].
The formula for finding the arc length is given by
\[\Rightarrow \]arc length\[=2\pi r\left( \dfrac{\theta }{360} \right)\]
We can find the arc length or portion of the arc in the circumference, if we know at what portion of 360 degrees the arc’s central angle is.
Arc length\[=2\pi r\left( \dfrac{\theta }{360} \right)\], where r is the radius of the circle.
\[\therefore 2\pi r\left( \dfrac{\theta }{360} \right)=\dfrac{a\pi }{4}\]
We have been given arc length\[=\dfrac{a\pi }{4}\]
Put radius, r = a
\[\Rightarrow 2\pi a\left( \dfrac{\theta }{360} \right)=\dfrac{a\pi }{4}\]
Simplifying the above equation,
\[\begin{align}
& 2\pi a\left( \dfrac{\theta }{360} \right)=\dfrac{a}{4}\pi \\
& \Rightarrow \dfrac{\theta }{360}=\dfrac{1}{8}\Rightarrow \theta =\dfrac{360}{8}={{45}^{\circ }} \\
\end{align}\]
\[\therefore \]We get the angle subtended at the center of the circle\[={{45}^{\circ }}\]
Note: Here, arc length \[=\dfrac{a\pi }{4}\]
If we assume value of \[\theta ={{45}^{\circ }}\]and applying we get
\[\begin{align}
& =2\pi a\left( \dfrac{45}{360} \right) \\
& =2\pi a\left( \dfrac{1}{8} \right)=\dfrac{a\pi }{4} \\
\end{align}\]
Recently Updated Pages
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Advantages and disadvantages of science
Trending doubts
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
10 examples of evaporation in daily life with explanations