Answer
Verified
447.9k+ views
Hint: This question has to be solved with the help of general formulas of parabola\[{Y^2} = {\text{ }}4{\text{ }}ax\]
i.e. vertex, directrix, latus rectum , focus, axis.
Complete step by step solution:-
Firstly draw the right hand parabola\[{Y^2} = {\text{ }}4{\text{ }}ax\] as shown in the figure.
As we have to prove that this equation of circle goes through the common point of axis & directrix of parabola i.e. \[A = ( - a,0)\]
As directrix is having ‘a’ distance from the origin in the opposite direction and equation of axis of parabola is \[y{\text{ }} = {\text{ }}0\] as the parabolic curve is symmetrical about y axis.
Since length of diameter is equal to length of latus rectum of \[{y^2} = {\text{ }}4ax\]
So, endpoints of latus Rectum of Parabola endPoints are the points of diameter of circle where PQ represents diameter of circle and latus Rectum of parabola.
\[\begin{array}{*{20}{l}}
{P = \left( {a,2a} \right)\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;Q = (a, - 2a)} \\
{\left( {{x_1},{\text{ }}{y_1}} \right)\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\left( {{x_2},{\text{ }}{y_2}} \right)}
\end{array}\]
We know that that if \[2\] endpoints of diameter are given, then equation of circle is
\[\left( {x{\text{ }}-{\text{ }}{x_1}} \right){\text{ }}\left( {x{\text{ }}-{\text{ }}{x_2}} \right){\text{ }} + {\text{ }}\left( {y - {y_1}} \right){\text{ }}\left( {y{\text{ }}-{\text{ }}{y_2}} \right){\text{ }} = {\text{ }}0\]
Here x1 = a, x2 = a
\[{Y_1} = {\text{ }}2a,\;\;\;\;\;\;\;{y_2} = {\text{ }} - 2a\]
Put these values in above equation:
\[\begin{array}{*{20}{l}}
{\left( {x{\text{ }}-{\text{ }}a} \right){\text{ }}\left( {x{\text{ }}-{\text{ }}a} \right){\text{ }} + {\text{ }}\left( {y{\text{ }}-{\text{ }}2a} \right){\text{ }}(y - \left( { - 2a} \right){\text{ }} = {\text{ }}0} \\
{{{\left( {x{\text{ }}-{\text{ }}a} \right)}^2} + {\text{ }}\left( {y - 2a} \right){\text{ }}\left( {y + 2a} \right){\text{ }} = {\text{ }}0}
\end{array}\]
\[
Since{\text{ }}\left( {a + b} \right)\left( {a - b} \right){\text{ }} = {\text{ }}{a^2}-{\text{ }}{b^2} \\
\;{\left( {x{\text{ }}-{\text{ }}a} \right)^2} + {\text{ }}{\left( y \right)^2}-{\text{ }}{\left( {2a} \right)^2} = {\text{ }}0 \\
{x^2} + {\text{ }}{a^2}-{\text{ }}2ax{\text{ }} + {\text{ }}{y^2}-{\text{ }}4{a^2} = {\text{ }}0\; \\
{x^2} + {\text{ }}{y^2}-{\text{ }}2ax{\text{ }}-{\text{ }}3{a^2} = {\text{ }}0{\text{ }} - - - - - - - - - - {\text{ }}\left( 1 \right) \\
\]
Which is the requisite equation of circle
Now, we know that coordinates of A are \[\left( { - a,{\text{ }}0} \right)\]
Put \[x{\text{ }} = {\text{ }} - {\text{ }}a,{\text{ }}y{\text{ }} = {\text{ }}0\] in equation \[\left( 1 \right)\]
\[
\begin{array}{*{20}{l}}
{{{\left( { - a} \right)}^2} + {\text{ }}0{\text{ }}-{\text{ }}2a\left( { - a} \right){\text{ }}3{a^2} = {\text{ }}0} \\
{{a^2} + {\text{ }}2{a^2}-{\text{ }}3{a^2} = {\text{ }}0} \\
{3{a^2}-{\text{ }}3{a^2} = {\text{ }}0}
\end{array} \\
0{\text{ }} = {\text{ }}0 \\
\]
$\therefore $ Point
\[\left( { - a,{\text{ }}0} \right)\]satisfied the equation of circle \[{x^2} + {\text{ }}{y^2}-{\text{ }}2ax{\text{ }}-{\text{ }}3{a^2} = {\text{ }}0.\] As it is the intersection point of directrix and axis of parabola.
Note: In these types of questions, various types of parabolic equations can be given to us, so we can solve these types of questions according to the type of parabola given to us may be right, left, upward or downward.
i.e. vertex, directrix, latus rectum , focus, axis.
Complete step by step solution:-
Firstly draw the right hand parabola\[{Y^2} = {\text{ }}4{\text{ }}ax\] as shown in the figure.
As we have to prove that this equation of circle goes through the common point of axis & directrix of parabola i.e. \[A = ( - a,0)\]
As directrix is having ‘a’ distance from the origin in the opposite direction and equation of axis of parabola is \[y{\text{ }} = {\text{ }}0\] as the parabolic curve is symmetrical about y axis.
Since length of diameter is equal to length of latus rectum of \[{y^2} = {\text{ }}4ax\]
So, endpoints of latus Rectum of Parabola endPoints are the points of diameter of circle where PQ represents diameter of circle and latus Rectum of parabola.
\[\begin{array}{*{20}{l}}
{P = \left( {a,2a} \right)\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;Q = (a, - 2a)} \\
{\left( {{x_1},{\text{ }}{y_1}} \right)\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\left( {{x_2},{\text{ }}{y_2}} \right)}
\end{array}\]
We know that that if \[2\] endpoints of diameter are given, then equation of circle is
\[\left( {x{\text{ }}-{\text{ }}{x_1}} \right){\text{ }}\left( {x{\text{ }}-{\text{ }}{x_2}} \right){\text{ }} + {\text{ }}\left( {y - {y_1}} \right){\text{ }}\left( {y{\text{ }}-{\text{ }}{y_2}} \right){\text{ }} = {\text{ }}0\]
Here x1 = a, x2 = a
\[{Y_1} = {\text{ }}2a,\;\;\;\;\;\;\;{y_2} = {\text{ }} - 2a\]
Put these values in above equation:
\[\begin{array}{*{20}{l}}
{\left( {x{\text{ }}-{\text{ }}a} \right){\text{ }}\left( {x{\text{ }}-{\text{ }}a} \right){\text{ }} + {\text{ }}\left( {y{\text{ }}-{\text{ }}2a} \right){\text{ }}(y - \left( { - 2a} \right){\text{ }} = {\text{ }}0} \\
{{{\left( {x{\text{ }}-{\text{ }}a} \right)}^2} + {\text{ }}\left( {y - 2a} \right){\text{ }}\left( {y + 2a} \right){\text{ }} = {\text{ }}0}
\end{array}\]
\[
Since{\text{ }}\left( {a + b} \right)\left( {a - b} \right){\text{ }} = {\text{ }}{a^2}-{\text{ }}{b^2} \\
\;{\left( {x{\text{ }}-{\text{ }}a} \right)^2} + {\text{ }}{\left( y \right)^2}-{\text{ }}{\left( {2a} \right)^2} = {\text{ }}0 \\
{x^2} + {\text{ }}{a^2}-{\text{ }}2ax{\text{ }} + {\text{ }}{y^2}-{\text{ }}4{a^2} = {\text{ }}0\; \\
{x^2} + {\text{ }}{y^2}-{\text{ }}2ax{\text{ }}-{\text{ }}3{a^2} = {\text{ }}0{\text{ }} - - - - - - - - - - {\text{ }}\left( 1 \right) \\
\]
Which is the requisite equation of circle
Now, we know that coordinates of A are \[\left( { - a,{\text{ }}0} \right)\]
Put \[x{\text{ }} = {\text{ }} - {\text{ }}a,{\text{ }}y{\text{ }} = {\text{ }}0\] in equation \[\left( 1 \right)\]
\[
\begin{array}{*{20}{l}}
{{{\left( { - a} \right)}^2} + {\text{ }}0{\text{ }}-{\text{ }}2a\left( { - a} \right){\text{ }}3{a^2} = {\text{ }}0} \\
{{a^2} + {\text{ }}2{a^2}-{\text{ }}3{a^2} = {\text{ }}0} \\
{3{a^2}-{\text{ }}3{a^2} = {\text{ }}0}
\end{array} \\
0{\text{ }} = {\text{ }}0 \\
\]
$\therefore $ Point
\[\left( { - a,{\text{ }}0} \right)\]satisfied the equation of circle \[{x^2} + {\text{ }}{y^2}-{\text{ }}2ax{\text{ }}-{\text{ }}3{a^2} = {\text{ }}0.\] As it is the intersection point of directrix and axis of parabola.
Note: In these types of questions, various types of parabolic equations can be given to us, so we can solve these types of questions according to the type of parabola given to us may be right, left, upward or downward.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Choose the antonym of the word given below Furious class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE