Answer
Verified
424.2k+ views
Hint:
Here, we have to find the value of the variable. We can solve the equation by using the trigonometric identity. Trigonometric equation is an equation involving one or more trigonometric ratios of unknown angles.
Formula Used:
We will use the following formulae:
1) Exponential Rule: \[{\left( {{a^x}} \right)^{\dfrac{1}{y}}} = {a^{\dfrac{x}{y}}}\]; \[{x^0} = 1\]
2) Logarithmic Rule: \[\log {a^b} = b\log a\]; \[{\log _a}a = 1\]
3) Trigonometric Identity: \[\sin (2\pi + \theta ) = \sin \theta ;\]
Complete step by step solution:
We are given with an equation \[\sin \left( {x + \dfrac{{{\pi ^3} + 2\sqrt {{\pi ^6}} }}{{{\pi ^2} + {\pi ^2}}} + {\pi ^{{\pi ^\theta }}}} \right) = \cos \left( {x + \dfrac{{{{\left( { - 1} \right)}^{16}}}}{2} - \dfrac{{{{\log }_2}\left( {\sqrt 8 } \right)}}{3}} \right)\]
First, we are converting the complex term inside the braces into a more simpler form.
Now, for the first term \[\dfrac{{{\pi ^3} + 2\sqrt {{\pi ^6}} }}{{{\pi ^2} + {\pi ^2}}} + {\pi ^{{\pi ^0}}}\], we will get
Exponential Rule: \[{\left( {{a^x}} \right)^{\dfrac{1}{y}}} = {a^{\dfrac{x}{y}}}\]and \[{x^0} = 1\]
By using the exponential rule, we have
\[ \Rightarrow \dfrac{{{\pi ^3} + 2\sqrt {{\pi ^6}} }}{{{\pi ^2} + {\pi ^2}}} + {\pi ^{{\pi ^0}}} = \dfrac{{{\pi ^3} + 2{\pi ^3}}}{{2{\pi ^2}}} + {\pi ^1}\]
Adding the like terms, we will get
\[ \Rightarrow \dfrac{{{\pi ^3} + 2\sqrt {{\pi ^6}} }}{{{\pi ^2} + {\pi ^2}}} + {\pi ^{{\pi ^0}}} = \dfrac{{3{\pi ^3}}}{{2{\pi ^2}}} + \pi \]
Dividing the term, we will get
\[ \Rightarrow \dfrac{{{\pi ^3} + 2\sqrt {{\pi ^6}} }}{{{\pi ^2} + {\pi ^2}}} + {\pi ^{{\pi ^0}}} = \dfrac{{3\pi }}{2} + \pi \]
By taking L.C.M., we will get
\[ \Rightarrow \dfrac{{{\pi ^3} + 2\sqrt {{\pi ^6}} }}{{{\pi ^2} + {\pi ^2}}} + {\pi ^{{\pi ^0}}} = \dfrac{{3\pi }}{2} + \pi \times \dfrac{2}{2}\]
\[ \Rightarrow \dfrac{{{\pi ^3} + 2\sqrt {{\pi ^6}} }}{{{\pi ^2} + {\pi ^2}}} + {\pi ^{{\pi ^0}}} = \dfrac{{3\pi }}{2} + \dfrac{{2\pi }}{2}\]
Adding the like terms, we get
\[ \Rightarrow \dfrac{{{\pi ^3} + 2\sqrt {{\pi ^6}} }}{{{\pi ^2} + {\pi ^2}}} + {\pi ^{{\pi ^0}}} = \dfrac{{5\pi }}{2}\]
Rewriting the equation, we get
\[ \Rightarrow \dfrac{{{\pi ^3} + 2\sqrt {{\pi ^6}} }}{{{\pi ^2} + {\pi ^2}}} + {\pi ^{{\pi ^0}}} = 2\pi + \dfrac{\pi }{2}\]
Now,
By Rewriting the equation, we get
\[ \Rightarrow \dfrac{{{{( - 1)}^{16}}}}{2} - \dfrac{{{{\log }_2}\sqrt 8 }}{3} = \dfrac{1}{2} - \dfrac{{{{\log }_2}\sqrt {{2^3}} }}{3}\]
\[ \Rightarrow \dfrac{{{{( - 1)}^{16}}}}{2} - \dfrac{{{{\log }_2}\sqrt 8 }}{3} = \dfrac{1}{2} - \dfrac{{{{\log }_2}{2^{\dfrac{3}{2}}}}}{3}\]
Logarithmic Rule: \[\log {a^b} = b\log a\]
By using logarithmic rule, we get
\[ \Rightarrow \dfrac{{{{( - 1)}^{16}}}}{2} - \dfrac{{{{\log }_2}\sqrt 8 }}{3} = \dfrac{1}{2} - \dfrac{{\dfrac{3}{2}{{\log }_2}2}}{3}\]
\[ \Rightarrow \dfrac{{{{( - 1)}^{16}}}}{2} - \dfrac{{{{\log }_2}\sqrt 8 }}{3} = \dfrac{1}{2} - \dfrac{{3{{\log }_2}2}}{{2 \cdot 3}}\]
Dividing both the terms, we get
\[ \Rightarrow \dfrac{{{{( - 1)}^{16}}}}{2} - \dfrac{{{{\log }_2}\sqrt 8 }}{3} = \dfrac{1}{2} - \dfrac{{{{\log }_2}2}}{2}\]
Logarithmic Rule: \[{\log _a}a = 1\]
By using logarithmic rule, we get
\[ \Rightarrow \dfrac{{{{( - 1)}^{16}}}}{2} - \dfrac{{{{\log }_2}\sqrt 8 }}{3} = \dfrac{1}{2} - \dfrac{1}{2}\]
\[ \Rightarrow \dfrac{{{{( - 1)}^{16}}}}{2} - \dfrac{{{{\log }_2}\sqrt 8 }}{3} = 0\]
Now, by using the equation and substituting the values, we get
\[ \Rightarrow \sin \left( {x + \dfrac{{{\pi ^3} + 2\sqrt {{\pi ^6}} }}{{{\pi ^2} + {\pi ^2}}} + {\pi ^{{\pi ^\theta }}}} \right) = \cos \left( {x + \dfrac{{{{\left( { - 1} \right)}^{16}}}}{2} - \dfrac{{{{\log }_2}\left( {\sqrt 8 } \right)}}{3}} \right)\]
\[ \Rightarrow \sin \left( {x + 2\pi + \dfrac{\pi }{2}} \right) = \cos \left( {x + 0} \right)\]
\[ \Rightarrow \sin \left( {2\pi + \dfrac{\pi }{2} + x} \right) = \cos \left( x \right)\]
Trigonometric Identity: \[\sin (2\pi + \theta ) = \sin \theta \]
Now, by using the trigonometric identity, we get
\[ \Rightarrow \sin \left( {\dfrac{\pi }{2} + x} \right) = \cos \left( x \right)\]
This equation holds true for all \[x \in {\bf{R}}\].
So, \[x = 0,\dfrac{\pi }{2}\].
Therefore, the two values of \[x\] that satisfy the equation are \[0,\dfrac{\pi }{2}\]
Note:
We should make sure of using the trigonometric identity, exponential rule, the logarithmic rule at the right place. A trigonometric equation will also have a general solution expressing all the values which would satisfy the given equation, and it is expressed in a generalized form in terms of ‘n’. Thus the trigonometric equation always possess various solutions.
Here, we have to find the value of the variable. We can solve the equation by using the trigonometric identity. Trigonometric equation is an equation involving one or more trigonometric ratios of unknown angles.
Formula Used:
We will use the following formulae:
1) Exponential Rule: \[{\left( {{a^x}} \right)^{\dfrac{1}{y}}} = {a^{\dfrac{x}{y}}}\]; \[{x^0} = 1\]
2) Logarithmic Rule: \[\log {a^b} = b\log a\]; \[{\log _a}a = 1\]
3) Trigonometric Identity: \[\sin (2\pi + \theta ) = \sin \theta ;\]
Complete step by step solution:
We are given with an equation \[\sin \left( {x + \dfrac{{{\pi ^3} + 2\sqrt {{\pi ^6}} }}{{{\pi ^2} + {\pi ^2}}} + {\pi ^{{\pi ^\theta }}}} \right) = \cos \left( {x + \dfrac{{{{\left( { - 1} \right)}^{16}}}}{2} - \dfrac{{{{\log }_2}\left( {\sqrt 8 } \right)}}{3}} \right)\]
First, we are converting the complex term inside the braces into a more simpler form.
Now, for the first term \[\dfrac{{{\pi ^3} + 2\sqrt {{\pi ^6}} }}{{{\pi ^2} + {\pi ^2}}} + {\pi ^{{\pi ^0}}}\], we will get
Exponential Rule: \[{\left( {{a^x}} \right)^{\dfrac{1}{y}}} = {a^{\dfrac{x}{y}}}\]and \[{x^0} = 1\]
By using the exponential rule, we have
\[ \Rightarrow \dfrac{{{\pi ^3} + 2\sqrt {{\pi ^6}} }}{{{\pi ^2} + {\pi ^2}}} + {\pi ^{{\pi ^0}}} = \dfrac{{{\pi ^3} + 2{\pi ^3}}}{{2{\pi ^2}}} + {\pi ^1}\]
Adding the like terms, we will get
\[ \Rightarrow \dfrac{{{\pi ^3} + 2\sqrt {{\pi ^6}} }}{{{\pi ^2} + {\pi ^2}}} + {\pi ^{{\pi ^0}}} = \dfrac{{3{\pi ^3}}}{{2{\pi ^2}}} + \pi \]
Dividing the term, we will get
\[ \Rightarrow \dfrac{{{\pi ^3} + 2\sqrt {{\pi ^6}} }}{{{\pi ^2} + {\pi ^2}}} + {\pi ^{{\pi ^0}}} = \dfrac{{3\pi }}{2} + \pi \]
By taking L.C.M., we will get
\[ \Rightarrow \dfrac{{{\pi ^3} + 2\sqrt {{\pi ^6}} }}{{{\pi ^2} + {\pi ^2}}} + {\pi ^{{\pi ^0}}} = \dfrac{{3\pi }}{2} + \pi \times \dfrac{2}{2}\]
\[ \Rightarrow \dfrac{{{\pi ^3} + 2\sqrt {{\pi ^6}} }}{{{\pi ^2} + {\pi ^2}}} + {\pi ^{{\pi ^0}}} = \dfrac{{3\pi }}{2} + \dfrac{{2\pi }}{2}\]
Adding the like terms, we get
\[ \Rightarrow \dfrac{{{\pi ^3} + 2\sqrt {{\pi ^6}} }}{{{\pi ^2} + {\pi ^2}}} + {\pi ^{{\pi ^0}}} = \dfrac{{5\pi }}{2}\]
Rewriting the equation, we get
\[ \Rightarrow \dfrac{{{\pi ^3} + 2\sqrt {{\pi ^6}} }}{{{\pi ^2} + {\pi ^2}}} + {\pi ^{{\pi ^0}}} = 2\pi + \dfrac{\pi }{2}\]
Now,
By Rewriting the equation, we get
\[ \Rightarrow \dfrac{{{{( - 1)}^{16}}}}{2} - \dfrac{{{{\log }_2}\sqrt 8 }}{3} = \dfrac{1}{2} - \dfrac{{{{\log }_2}\sqrt {{2^3}} }}{3}\]
\[ \Rightarrow \dfrac{{{{( - 1)}^{16}}}}{2} - \dfrac{{{{\log }_2}\sqrt 8 }}{3} = \dfrac{1}{2} - \dfrac{{{{\log }_2}{2^{\dfrac{3}{2}}}}}{3}\]
Logarithmic Rule: \[\log {a^b} = b\log a\]
By using logarithmic rule, we get
\[ \Rightarrow \dfrac{{{{( - 1)}^{16}}}}{2} - \dfrac{{{{\log }_2}\sqrt 8 }}{3} = \dfrac{1}{2} - \dfrac{{\dfrac{3}{2}{{\log }_2}2}}{3}\]
\[ \Rightarrow \dfrac{{{{( - 1)}^{16}}}}{2} - \dfrac{{{{\log }_2}\sqrt 8 }}{3} = \dfrac{1}{2} - \dfrac{{3{{\log }_2}2}}{{2 \cdot 3}}\]
Dividing both the terms, we get
\[ \Rightarrow \dfrac{{{{( - 1)}^{16}}}}{2} - \dfrac{{{{\log }_2}\sqrt 8 }}{3} = \dfrac{1}{2} - \dfrac{{{{\log }_2}2}}{2}\]
Logarithmic Rule: \[{\log _a}a = 1\]
By using logarithmic rule, we get
\[ \Rightarrow \dfrac{{{{( - 1)}^{16}}}}{2} - \dfrac{{{{\log }_2}\sqrt 8 }}{3} = \dfrac{1}{2} - \dfrac{1}{2}\]
\[ \Rightarrow \dfrac{{{{( - 1)}^{16}}}}{2} - \dfrac{{{{\log }_2}\sqrt 8 }}{3} = 0\]
Now, by using the equation and substituting the values, we get
\[ \Rightarrow \sin \left( {x + \dfrac{{{\pi ^3} + 2\sqrt {{\pi ^6}} }}{{{\pi ^2} + {\pi ^2}}} + {\pi ^{{\pi ^\theta }}}} \right) = \cos \left( {x + \dfrac{{{{\left( { - 1} \right)}^{16}}}}{2} - \dfrac{{{{\log }_2}\left( {\sqrt 8 } \right)}}{3}} \right)\]
\[ \Rightarrow \sin \left( {x + 2\pi + \dfrac{\pi }{2}} \right) = \cos \left( {x + 0} \right)\]
\[ \Rightarrow \sin \left( {2\pi + \dfrac{\pi }{2} + x} \right) = \cos \left( x \right)\]
Trigonometric Identity: \[\sin (2\pi + \theta ) = \sin \theta \]
Now, by using the trigonometric identity, we get
\[ \Rightarrow \sin \left( {\dfrac{\pi }{2} + x} \right) = \cos \left( x \right)\]
This equation holds true for all \[x \in {\bf{R}}\].
So, \[x = 0,\dfrac{\pi }{2}\].
Therefore, the two values of \[x\] that satisfy the equation are \[0,\dfrac{\pi }{2}\]
Note:
We should make sure of using the trigonometric identity, exponential rule, the logarithmic rule at the right place. A trigonometric equation will also have a general solution expressing all the values which would satisfy the given equation, and it is expressed in a generalized form in terms of ‘n’. Thus the trigonometric equation always possess various solutions.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Discuss the main reasons for poverty in India
A Paragraph on Pollution in about 100-150 Words
Why is monsoon considered a unifying bond class 10 social science CBSE
What makes elections in India democratic class 11 social science CBSE
What does the term Genocidal War refer to class 12 social science CBSE
A weight hangs freely from the end of a spring A boy class 11 physics CBSE