
Find at least two \[x\] that make this equation true: \[\sin \left( {x + \dfrac{{{\pi ^3} + 2\sqrt {{\pi ^6}} }}{{{\pi ^2} + {\pi ^2}}} + {\pi ^{{\pi ^\theta }}}} \right) = \cos \left( {x + \dfrac{{{{\left( { - 1} \right)}^{16}}}}{2} - \dfrac{{{{\log }_2}\left( {\sqrt 8 } \right)}}{3}} \right)\]
Answer
444k+ views
Hint:
Here, we have to find the value of the variable. We can solve the equation by using the trigonometric identity. Trigonometric equation is an equation involving one or more trigonometric ratios of unknown angles.
Formula Used:
We will use the following formulae:
1) Exponential Rule: \[{\left( {{a^x}} \right)^{\dfrac{1}{y}}} = {a^{\dfrac{x}{y}}}\]; \[{x^0} = 1\]
2) Logarithmic Rule: \[\log {a^b} = b\log a\]; \[{\log _a}a = 1\]
3) Trigonometric Identity: \[\sin (2\pi + \theta ) = \sin \theta ;\]
Complete step by step solution:
We are given with an equation \[\sin \left( {x + \dfrac{{{\pi ^3} + 2\sqrt {{\pi ^6}} }}{{{\pi ^2} + {\pi ^2}}} + {\pi ^{{\pi ^\theta }}}} \right) = \cos \left( {x + \dfrac{{{{\left( { - 1} \right)}^{16}}}}{2} - \dfrac{{{{\log }_2}\left( {\sqrt 8 } \right)}}{3}} \right)\]
First, we are converting the complex term inside the braces into a more simpler form.
Now, for the first term \[\dfrac{{{\pi ^3} + 2\sqrt {{\pi ^6}} }}{{{\pi ^2} + {\pi ^2}}} + {\pi ^{{\pi ^0}}}\], we will get
Exponential Rule: \[{\left( {{a^x}} \right)^{\dfrac{1}{y}}} = {a^{\dfrac{x}{y}}}\]and \[{x^0} = 1\]
By using the exponential rule, we have
\[ \Rightarrow \dfrac{{{\pi ^3} + 2\sqrt {{\pi ^6}} }}{{{\pi ^2} + {\pi ^2}}} + {\pi ^{{\pi ^0}}} = \dfrac{{{\pi ^3} + 2{\pi ^3}}}{{2{\pi ^2}}} + {\pi ^1}\]
Adding the like terms, we will get
\[ \Rightarrow \dfrac{{{\pi ^3} + 2\sqrt {{\pi ^6}} }}{{{\pi ^2} + {\pi ^2}}} + {\pi ^{{\pi ^0}}} = \dfrac{{3{\pi ^3}}}{{2{\pi ^2}}} + \pi \]
Dividing the term, we will get
\[ \Rightarrow \dfrac{{{\pi ^3} + 2\sqrt {{\pi ^6}} }}{{{\pi ^2} + {\pi ^2}}} + {\pi ^{{\pi ^0}}} = \dfrac{{3\pi }}{2} + \pi \]
By taking L.C.M., we will get
\[ \Rightarrow \dfrac{{{\pi ^3} + 2\sqrt {{\pi ^6}} }}{{{\pi ^2} + {\pi ^2}}} + {\pi ^{{\pi ^0}}} = \dfrac{{3\pi }}{2} + \pi \times \dfrac{2}{2}\]
\[ \Rightarrow \dfrac{{{\pi ^3} + 2\sqrt {{\pi ^6}} }}{{{\pi ^2} + {\pi ^2}}} + {\pi ^{{\pi ^0}}} = \dfrac{{3\pi }}{2} + \dfrac{{2\pi }}{2}\]
Adding the like terms, we get
\[ \Rightarrow \dfrac{{{\pi ^3} + 2\sqrt {{\pi ^6}} }}{{{\pi ^2} + {\pi ^2}}} + {\pi ^{{\pi ^0}}} = \dfrac{{5\pi }}{2}\]
Rewriting the equation, we get
\[ \Rightarrow \dfrac{{{\pi ^3} + 2\sqrt {{\pi ^6}} }}{{{\pi ^2} + {\pi ^2}}} + {\pi ^{{\pi ^0}}} = 2\pi + \dfrac{\pi }{2}\]
Now,
By Rewriting the equation, we get
\[ \Rightarrow \dfrac{{{{( - 1)}^{16}}}}{2} - \dfrac{{{{\log }_2}\sqrt 8 }}{3} = \dfrac{1}{2} - \dfrac{{{{\log }_2}\sqrt {{2^3}} }}{3}\]
\[ \Rightarrow \dfrac{{{{( - 1)}^{16}}}}{2} - \dfrac{{{{\log }_2}\sqrt 8 }}{3} = \dfrac{1}{2} - \dfrac{{{{\log }_2}{2^{\dfrac{3}{2}}}}}{3}\]
Logarithmic Rule: \[\log {a^b} = b\log a\]
By using logarithmic rule, we get
\[ \Rightarrow \dfrac{{{{( - 1)}^{16}}}}{2} - \dfrac{{{{\log }_2}\sqrt 8 }}{3} = \dfrac{1}{2} - \dfrac{{\dfrac{3}{2}{{\log }_2}2}}{3}\]
\[ \Rightarrow \dfrac{{{{( - 1)}^{16}}}}{2} - \dfrac{{{{\log }_2}\sqrt 8 }}{3} = \dfrac{1}{2} - \dfrac{{3{{\log }_2}2}}{{2 \cdot 3}}\]
Dividing both the terms, we get
\[ \Rightarrow \dfrac{{{{( - 1)}^{16}}}}{2} - \dfrac{{{{\log }_2}\sqrt 8 }}{3} = \dfrac{1}{2} - \dfrac{{{{\log }_2}2}}{2}\]
Logarithmic Rule: \[{\log _a}a = 1\]
By using logarithmic rule, we get
\[ \Rightarrow \dfrac{{{{( - 1)}^{16}}}}{2} - \dfrac{{{{\log }_2}\sqrt 8 }}{3} = \dfrac{1}{2} - \dfrac{1}{2}\]
\[ \Rightarrow \dfrac{{{{( - 1)}^{16}}}}{2} - \dfrac{{{{\log }_2}\sqrt 8 }}{3} = 0\]
Now, by using the equation and substituting the values, we get
\[ \Rightarrow \sin \left( {x + \dfrac{{{\pi ^3} + 2\sqrt {{\pi ^6}} }}{{{\pi ^2} + {\pi ^2}}} + {\pi ^{{\pi ^\theta }}}} \right) = \cos \left( {x + \dfrac{{{{\left( { - 1} \right)}^{16}}}}{2} - \dfrac{{{{\log }_2}\left( {\sqrt 8 } \right)}}{3}} \right)\]
\[ \Rightarrow \sin \left( {x + 2\pi + \dfrac{\pi }{2}} \right) = \cos \left( {x + 0} \right)\]
\[ \Rightarrow \sin \left( {2\pi + \dfrac{\pi }{2} + x} \right) = \cos \left( x \right)\]
Trigonometric Identity: \[\sin (2\pi + \theta ) = \sin \theta \]
Now, by using the trigonometric identity, we get
\[ \Rightarrow \sin \left( {\dfrac{\pi }{2} + x} \right) = \cos \left( x \right)\]
This equation holds true for all \[x \in {\bf{R}}\].
So, \[x = 0,\dfrac{\pi }{2}\].
Therefore, the two values of \[x\] that satisfy the equation are \[0,\dfrac{\pi }{2}\]
Note:
We should make sure of using the trigonometric identity, exponential rule, the logarithmic rule at the right place. A trigonometric equation will also have a general solution expressing all the values which would satisfy the given equation, and it is expressed in a generalized form in terms of ‘n’. Thus the trigonometric equation always possess various solutions.
Here, we have to find the value of the variable. We can solve the equation by using the trigonometric identity. Trigonometric equation is an equation involving one or more trigonometric ratios of unknown angles.
Formula Used:
We will use the following formulae:
1) Exponential Rule: \[{\left( {{a^x}} \right)^{\dfrac{1}{y}}} = {a^{\dfrac{x}{y}}}\]; \[{x^0} = 1\]
2) Logarithmic Rule: \[\log {a^b} = b\log a\]; \[{\log _a}a = 1\]
3) Trigonometric Identity: \[\sin (2\pi + \theta ) = \sin \theta ;\]
Complete step by step solution:
We are given with an equation \[\sin \left( {x + \dfrac{{{\pi ^3} + 2\sqrt {{\pi ^6}} }}{{{\pi ^2} + {\pi ^2}}} + {\pi ^{{\pi ^\theta }}}} \right) = \cos \left( {x + \dfrac{{{{\left( { - 1} \right)}^{16}}}}{2} - \dfrac{{{{\log }_2}\left( {\sqrt 8 } \right)}}{3}} \right)\]
First, we are converting the complex term inside the braces into a more simpler form.
Now, for the first term \[\dfrac{{{\pi ^3} + 2\sqrt {{\pi ^6}} }}{{{\pi ^2} + {\pi ^2}}} + {\pi ^{{\pi ^0}}}\], we will get
Exponential Rule: \[{\left( {{a^x}} \right)^{\dfrac{1}{y}}} = {a^{\dfrac{x}{y}}}\]and \[{x^0} = 1\]
By using the exponential rule, we have
\[ \Rightarrow \dfrac{{{\pi ^3} + 2\sqrt {{\pi ^6}} }}{{{\pi ^2} + {\pi ^2}}} + {\pi ^{{\pi ^0}}} = \dfrac{{{\pi ^3} + 2{\pi ^3}}}{{2{\pi ^2}}} + {\pi ^1}\]
Adding the like terms, we will get
\[ \Rightarrow \dfrac{{{\pi ^3} + 2\sqrt {{\pi ^6}} }}{{{\pi ^2} + {\pi ^2}}} + {\pi ^{{\pi ^0}}} = \dfrac{{3{\pi ^3}}}{{2{\pi ^2}}} + \pi \]
Dividing the term, we will get
\[ \Rightarrow \dfrac{{{\pi ^3} + 2\sqrt {{\pi ^6}} }}{{{\pi ^2} + {\pi ^2}}} + {\pi ^{{\pi ^0}}} = \dfrac{{3\pi }}{2} + \pi \]
By taking L.C.M., we will get
\[ \Rightarrow \dfrac{{{\pi ^3} + 2\sqrt {{\pi ^6}} }}{{{\pi ^2} + {\pi ^2}}} + {\pi ^{{\pi ^0}}} = \dfrac{{3\pi }}{2} + \pi \times \dfrac{2}{2}\]
\[ \Rightarrow \dfrac{{{\pi ^3} + 2\sqrt {{\pi ^6}} }}{{{\pi ^2} + {\pi ^2}}} + {\pi ^{{\pi ^0}}} = \dfrac{{3\pi }}{2} + \dfrac{{2\pi }}{2}\]
Adding the like terms, we get
\[ \Rightarrow \dfrac{{{\pi ^3} + 2\sqrt {{\pi ^6}} }}{{{\pi ^2} + {\pi ^2}}} + {\pi ^{{\pi ^0}}} = \dfrac{{5\pi }}{2}\]
Rewriting the equation, we get
\[ \Rightarrow \dfrac{{{\pi ^3} + 2\sqrt {{\pi ^6}} }}{{{\pi ^2} + {\pi ^2}}} + {\pi ^{{\pi ^0}}} = 2\pi + \dfrac{\pi }{2}\]
Now,
By Rewriting the equation, we get
\[ \Rightarrow \dfrac{{{{( - 1)}^{16}}}}{2} - \dfrac{{{{\log }_2}\sqrt 8 }}{3} = \dfrac{1}{2} - \dfrac{{{{\log }_2}\sqrt {{2^3}} }}{3}\]
\[ \Rightarrow \dfrac{{{{( - 1)}^{16}}}}{2} - \dfrac{{{{\log }_2}\sqrt 8 }}{3} = \dfrac{1}{2} - \dfrac{{{{\log }_2}{2^{\dfrac{3}{2}}}}}{3}\]
Logarithmic Rule: \[\log {a^b} = b\log a\]
By using logarithmic rule, we get
\[ \Rightarrow \dfrac{{{{( - 1)}^{16}}}}{2} - \dfrac{{{{\log }_2}\sqrt 8 }}{3} = \dfrac{1}{2} - \dfrac{{\dfrac{3}{2}{{\log }_2}2}}{3}\]
\[ \Rightarrow \dfrac{{{{( - 1)}^{16}}}}{2} - \dfrac{{{{\log }_2}\sqrt 8 }}{3} = \dfrac{1}{2} - \dfrac{{3{{\log }_2}2}}{{2 \cdot 3}}\]
Dividing both the terms, we get
\[ \Rightarrow \dfrac{{{{( - 1)}^{16}}}}{2} - \dfrac{{{{\log }_2}\sqrt 8 }}{3} = \dfrac{1}{2} - \dfrac{{{{\log }_2}2}}{2}\]
Logarithmic Rule: \[{\log _a}a = 1\]
By using logarithmic rule, we get
\[ \Rightarrow \dfrac{{{{( - 1)}^{16}}}}{2} - \dfrac{{{{\log }_2}\sqrt 8 }}{3} = \dfrac{1}{2} - \dfrac{1}{2}\]
\[ \Rightarrow \dfrac{{{{( - 1)}^{16}}}}{2} - \dfrac{{{{\log }_2}\sqrt 8 }}{3} = 0\]
Now, by using the equation and substituting the values, we get
\[ \Rightarrow \sin \left( {x + \dfrac{{{\pi ^3} + 2\sqrt {{\pi ^6}} }}{{{\pi ^2} + {\pi ^2}}} + {\pi ^{{\pi ^\theta }}}} \right) = \cos \left( {x + \dfrac{{{{\left( { - 1} \right)}^{16}}}}{2} - \dfrac{{{{\log }_2}\left( {\sqrt 8 } \right)}}{3}} \right)\]
\[ \Rightarrow \sin \left( {x + 2\pi + \dfrac{\pi }{2}} \right) = \cos \left( {x + 0} \right)\]
\[ \Rightarrow \sin \left( {2\pi + \dfrac{\pi }{2} + x} \right) = \cos \left( x \right)\]
Trigonometric Identity: \[\sin (2\pi + \theta ) = \sin \theta \]
Now, by using the trigonometric identity, we get
\[ \Rightarrow \sin \left( {\dfrac{\pi }{2} + x} \right) = \cos \left( x \right)\]
This equation holds true for all \[x \in {\bf{R}}\].
So, \[x = 0,\dfrac{\pi }{2}\].
Therefore, the two values of \[x\] that satisfy the equation are \[0,\dfrac{\pi }{2}\]
Note:
We should make sure of using the trigonometric identity, exponential rule, the logarithmic rule at the right place. A trigonometric equation will also have a general solution expressing all the values which would satisfy the given equation, and it is expressed in a generalized form in terms of ‘n’. Thus the trigonometric equation always possess various solutions.
Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE

The area of a 6m wide road outside a garden in all class 10 maths CBSE

What is the electric flux through a cube of side 1 class 10 physics CBSE

If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE

The radius and height of a cylinder are in the ratio class 10 maths CBSE

An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE

Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Why is there a time difference of about 5 hours between class 10 social science CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

Explain the Treaty of Vienna of 1815 class 10 social science CBSE

Write an application to the principal requesting five class 10 english CBSE
