Answer

Verified

381k+ views

**Hint:**Given that the function is \[p(x)=2{{x}^{4}}-3{{x}^{3}}-3{{x}^{2}}+6x-2\] and given zeros are \[\left( x+\sqrt{2} \right)\left( x-\sqrt{2} \right)=\left( {{x}^{2}}-2 \right)\] . We will perform the long division method for polynomials using the basic methodology, Dividend = Divisor * Quotient + Remainder, where dividend is the given function p(x), divisor is the product of the given zeros of the function p(x), quotient is the answer we get after division and remainder is any remaining term or number after division.

**Complete step by step answer:**

The given function is\[p(x)=2{{x}^{4}}-3{{x}^{3}}-3{{x}^{2}}+6x-2\] . The roots of the given function is \[\left( x+\sqrt{2} \right)\left( x-\sqrt{2} \right)=\left( {{x}^{2}}-2 \right)\]

First arrange the term of dividend and the divisor in the decreasing order of their degrees.

To obtain the first term of the quotient divide the highest degree term of the dividend by the highest degree term of the divisor.

To obtain the second term of the quotient, divide the highest degree term of the new dividend obtained as remainder by the highest degree term of the divisor.

Continue this process till the degree of remainder is less than the degree of divisor.

\[\begin{align}

& {{x}^{2}}-2\overset{\,\,2{{x}^{2}}-3x+1}{\overline{\left){2{{x}^{4}}-3{{x}^{3}}-3{{x}^{2}}+6x-2}\right.}} \\

& \,\,\,\,\,\,\,\,\,\,-\underline{\left( 2{{x}^{4}} \right)\,\,\,\,\,\,\,+\left( -4{{x}^{2}} \right)} \\

& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,-3{{x}^{3}}+\,\,\,\,{{x}^{2}}+6x \\

& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,-\underline{\left( -\,3{{x}^{3}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,+6x \right)} \\

& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{{x}^{2}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,-2 \\

& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,-\underline{\left( {{x}^{2}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,-2 \right)} \\

& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,0 \\

\end{align}\]

Finding the roots of \[2{{x}^{2}}-3x+1\] as,

\[\begin{align}

& 2{{x}^{2}}-3x+1=2{{x}^{2}}-2x-x+1 \\

& =2x\left( x-1 \right)-1\left( x-1 \right) \\

& =\left( 2x-1 \right)\left( x-1 \right)

\end{align}\]

Put the above expression equal to 0 as,

\[\begin{align}

& \left( 2x-1 \right)=0 \\

& 2x=1 \\

& x=\dfrac{1}{2}

\end{align}\]

\[\begin{align}

& \left( x-1 \right)=0 \\

& x=1

\end{align}\]

**Therefore the remaining zeros of the above function \[p(x)=2{{x}^{4}}-3{{x}^{3}}-3{{x}^{2}}+6x-2\] are \[\dfrac{1}{2}\] and 1.**

**Note:**The possible error that you may encounter could be that the long division was not done properly. Be careful when calculating the roots and keep in mind the sign of the expression being operated on.

Recently Updated Pages

The branch of science which deals with nature and natural class 10 physics CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Define absolute refractive index of a medium

Find out what do the algal bloom and redtides sign class 10 biology CBSE

Prove that the function fleft x right xn is continuous class 12 maths CBSE

Find the values of other five trigonometric functions class 10 maths CBSE

Trending doubts

How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Give simple chemical tests to distinguish between the class 12 chemistry CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference Between Plant Cell and Animal Cell

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

What is the color of ferrous sulphate crystals? How does this color change after heating? Name the products formed on strongly heating ferrous sulphate crystals. What type of chemical reaction occurs in this type of change.

Differentiate between lanthanoids and actinoids class 12 chemistry CBSE

Classify weak and strong ligands out of a OH b F c class 12 chemistry CBSE

Define Vant Hoff factor How is it related to the degree class 12 chemistry CBSE