Find all the zeros of \[p(x)=2{{x}^{4}}-3{{x}^{3}}-3{{x}^{2}}+6x-2\] , if you know that two of its zeros are \[\sqrt{2}\]and \[-\sqrt{2}\].
Answer
335.1k+ views
Hint: Given that the function is \[p(x)=2{{x}^{4}}-3{{x}^{3}}-3{{x}^{2}}+6x-2\] and given zeros are \[\left( x+\sqrt{2} \right)\left( x-\sqrt{2} \right)=\left( {{x}^{2}}-2 \right)\] . We will perform the long division method for polynomials using the basic methodology, Dividend = Divisor * Quotient + Remainder, where dividend is the given function p(x), divisor is the product of the given zeros of the function p(x), quotient is the answer we get after division and remainder is any remaining term or number after division.
Complete step by step answer:
The given function is\[p(x)=2{{x}^{4}}-3{{x}^{3}}-3{{x}^{2}}+6x-2\] . The roots of the given function is \[\left( x+\sqrt{2} \right)\left( x-\sqrt{2} \right)=\left( {{x}^{2}}-2 \right)\]
First arrange the term of dividend and the divisor in the decreasing order of their degrees.
To obtain the first term of the quotient divide the highest degree term of the dividend by the highest degree term of the divisor.
To obtain the second term of the quotient, divide the highest degree term of the new dividend obtained as remainder by the highest degree term of the divisor.
Continue this process till the degree of remainder is less than the degree of divisor.
\[\begin{align}
& {{x}^{2}}-2\overset{\,\,2{{x}^{2}}-3x+1}{\overline{\left){2{{x}^{4}}-3{{x}^{3}}-3{{x}^{2}}+6x-2}\right.}} \\
& \,\,\,\,\,\,\,\,\,\,-\underline{\left( 2{{x}^{4}} \right)\,\,\,\,\,\,\,+\left( -4{{x}^{2}} \right)} \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,-3{{x}^{3}}+\,\,\,\,{{x}^{2}}+6x \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,-\underline{\left( -\,3{{x}^{3}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,+6x \right)} \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{{x}^{2}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,-2 \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,-\underline{\left( {{x}^{2}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,-2 \right)} \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,0 \\
\end{align}\]
Finding the roots of \[2{{x}^{2}}-3x+1\] as,
\[\begin{align}
& 2{{x}^{2}}-3x+1=2{{x}^{2}}-2x-x+1 \\
& =2x\left( x-1 \right)-1\left( x-1 \right) \\
& =\left( 2x-1 \right)\left( x-1 \right)
\end{align}\]
Put the above expression equal to 0 as,
\[\begin{align}
& \left( 2x-1 \right)=0 \\
& 2x=1 \\
& x=\dfrac{1}{2}
\end{align}\]
\[\begin{align}
& \left( x-1 \right)=0 \\
& x=1
\end{align}\]
Therefore the remaining zeros of the above function \[p(x)=2{{x}^{4}}-3{{x}^{3}}-3{{x}^{2}}+6x-2\] are \[\dfrac{1}{2}\] and 1.
Note: The possible error that you may encounter could be that the long division was not done properly. Be careful when calculating the roots and keep in mind the sign of the expression being operated on.
Complete step by step answer:
The given function is\[p(x)=2{{x}^{4}}-3{{x}^{3}}-3{{x}^{2}}+6x-2\] . The roots of the given function is \[\left( x+\sqrt{2} \right)\left( x-\sqrt{2} \right)=\left( {{x}^{2}}-2 \right)\]
First arrange the term of dividend and the divisor in the decreasing order of their degrees.
To obtain the first term of the quotient divide the highest degree term of the dividend by the highest degree term of the divisor.
To obtain the second term of the quotient, divide the highest degree term of the new dividend obtained as remainder by the highest degree term of the divisor.
Continue this process till the degree of remainder is less than the degree of divisor.
\[\begin{align}
& {{x}^{2}}-2\overset{\,\,2{{x}^{2}}-3x+1}{\overline{\left){2{{x}^{4}}-3{{x}^{3}}-3{{x}^{2}}+6x-2}\right.}} \\
& \,\,\,\,\,\,\,\,\,\,-\underline{\left( 2{{x}^{4}} \right)\,\,\,\,\,\,\,+\left( -4{{x}^{2}} \right)} \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,-3{{x}^{3}}+\,\,\,\,{{x}^{2}}+6x \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,-\underline{\left( -\,3{{x}^{3}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,+6x \right)} \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{{x}^{2}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,-2 \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,-\underline{\left( {{x}^{2}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,-2 \right)} \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,0 \\
\end{align}\]
Finding the roots of \[2{{x}^{2}}-3x+1\] as,
\[\begin{align}
& 2{{x}^{2}}-3x+1=2{{x}^{2}}-2x-x+1 \\
& =2x\left( x-1 \right)-1\left( x-1 \right) \\
& =\left( 2x-1 \right)\left( x-1 \right)
\end{align}\]
Put the above expression equal to 0 as,
\[\begin{align}
& \left( 2x-1 \right)=0 \\
& 2x=1 \\
& x=\dfrac{1}{2}
\end{align}\]
\[\begin{align}
& \left( x-1 \right)=0 \\
& x=1
\end{align}\]
Therefore the remaining zeros of the above function \[p(x)=2{{x}^{4}}-3{{x}^{3}}-3{{x}^{2}}+6x-2\] are \[\dfrac{1}{2}\] and 1.
Note: The possible error that you may encounter could be that the long division was not done properly. Be careful when calculating the roots and keep in mind the sign of the expression being operated on.
Last updated date: 28th Sep 2023
•
Total views: 335.1k
•
Views today: 4.35k
Recently Updated Pages
What do you mean by public facilities

Please Write an Essay on Disaster Management

Paragraph on Friendship

Slogan on Noise Pollution

Disadvantages of Advertising

Prepare a Pocket Guide on First Aid for your School

Trending doubts
How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

What is the IUPAC name of CH3CH CH COOH A 2Butenoic class 11 chemistry CBSE

Drive an expression for the electric field due to an class 12 physics CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference Between Plant Cell and Animal Cell

The dimensions of potential gradient are A MLT 3A 1 class 11 physics CBSE

Define electric potential and write down its dimen class 9 physics CBSE

Why is the electric field perpendicular to the equipotential class 12 physics CBSE
