
Find a rational number between the following rational numbers:
(i) $\dfrac{3}{4}$ and $\dfrac{4}{3}$
(ii) 5 and 6
(iii) $\dfrac{-3}{4}$ and $\dfrac{1}{3}$
Answer
547.5k+ views
Hint: We start solving the problem by recalling the fact that the average of the two numbers a and b lies between them and its value is $\dfrac{a+b}{2}$. We then find the average of the given two rational numbers by using this formula. We then make the necessary calculations to get the value of the required rational number. We then follow the similar steps to find the rational number of the remaining two problems.
Complete step by step answer:
According to the problem, we need to find a rational number between the following rational numbers (i) $\dfrac{3}{4}$ and $\dfrac{4}{3}$
(ii) 5 and 6
(iii) $\dfrac{-3}{4}$ and $\dfrac{1}{3}$
(i) Now, let us find the rational that lies between the rational numbers $\dfrac{3}{4}$ and $\dfrac{4}{3}$. We know that the average of the two numbers a and b lies between them and its value is $\dfrac{a+b}{2}$.
So, let us find the average of the rational numbers $\dfrac{3}{4}$ and $\dfrac{4}{3}$. Let us assume that average as ${{r}_{1}}$.
$\Rightarrow {{r}_{1}}=\dfrac{\dfrac{3}{4}+\dfrac{4}{3}}{2}$.
$\Rightarrow {{r}_{1}}=\dfrac{\dfrac{9+16}{12}}{2}$.
$\Rightarrow {{r}_{1}}=\dfrac{\dfrac{25}{12}}{2}$.
$\Rightarrow {{r}_{1}}=\dfrac{25}{24}$.
∴ The rational numbers that lie between the rational numbers $\dfrac{3}{4}$ and $\dfrac{4}{3}$ is $\dfrac{25}{24}$.
(ii) Now, let us find the rational that lies between the rational numbers 5 and 6. We know that the average of the two numbers a and b lies between them and its value is $\dfrac{a+b}{2}$.
So, let us find the average of the rational numbers 5 and 6. Let us assume that average as ${{r}_{2}}$.
$\Rightarrow {{r}_{2}}=\dfrac{5+6}{2}$.
$\Rightarrow {{r}_{2}}=\dfrac{11}{2}$.
∴ The rational numbers that lie between the rational numbers 5 and 6 is $\dfrac{11}{2}$.
(iii) Now, let us find the rational that lies between the rational numbers $\dfrac{-3}{4}$ and $\dfrac{1}{3}$. We know that the average of the two numbers a and b lies between them and its value is $\dfrac{a+b}{2}$.
So, let us find the average of the rational numbers $\dfrac{-3}{4}$ and $\dfrac{1}{3}$. Let us assume that average as ${{r}_{3}}$.
$\Rightarrow {{r}_{3}}=\dfrac{\dfrac{-3}{4}+\dfrac{1}{3}}{2}$.
$\Rightarrow {{r}_{3}}=\dfrac{\dfrac{-9+4}{12}}{2}$.
$\Rightarrow {{r}_{3}}=\dfrac{\dfrac{-5}{12}}{2}$.
$\Rightarrow {{r}_{3}}=\dfrac{-5}{24}$.
∴ The rational numbers that lies between the rational numbers $\dfrac{-3}{4}$ and $\dfrac{1}{3}$ is $\dfrac{-5}{24}$.
Note: We can find any rational number that lies between the given rational numbers irrespective of their average. Here we found the average of them because it is easier to calculate than to find the other rational numbers. We should know that integers are also part of rational numbers. We can also solve this problem by using $a+r\left( b-a \right)$, where a, b are the two given rational numbers and r is any value in the interval in $\left( 0,1 \right)$.
Complete step by step answer:
According to the problem, we need to find a rational number between the following rational numbers (i) $\dfrac{3}{4}$ and $\dfrac{4}{3}$
(ii) 5 and 6
(iii) $\dfrac{-3}{4}$ and $\dfrac{1}{3}$
(i) Now, let us find the rational that lies between the rational numbers $\dfrac{3}{4}$ and $\dfrac{4}{3}$. We know that the average of the two numbers a and b lies between them and its value is $\dfrac{a+b}{2}$.
So, let us find the average of the rational numbers $\dfrac{3}{4}$ and $\dfrac{4}{3}$. Let us assume that average as ${{r}_{1}}$.
$\Rightarrow {{r}_{1}}=\dfrac{\dfrac{3}{4}+\dfrac{4}{3}}{2}$.
$\Rightarrow {{r}_{1}}=\dfrac{\dfrac{9+16}{12}}{2}$.
$\Rightarrow {{r}_{1}}=\dfrac{\dfrac{25}{12}}{2}$.
$\Rightarrow {{r}_{1}}=\dfrac{25}{24}$.
∴ The rational numbers that lie between the rational numbers $\dfrac{3}{4}$ and $\dfrac{4}{3}$ is $\dfrac{25}{24}$.
(ii) Now, let us find the rational that lies between the rational numbers 5 and 6. We know that the average of the two numbers a and b lies between them and its value is $\dfrac{a+b}{2}$.
So, let us find the average of the rational numbers 5 and 6. Let us assume that average as ${{r}_{2}}$.
$\Rightarrow {{r}_{2}}=\dfrac{5+6}{2}$.
$\Rightarrow {{r}_{2}}=\dfrac{11}{2}$.
∴ The rational numbers that lie between the rational numbers 5 and 6 is $\dfrac{11}{2}$.
(iii) Now, let us find the rational that lies between the rational numbers $\dfrac{-3}{4}$ and $\dfrac{1}{3}$. We know that the average of the two numbers a and b lies between them and its value is $\dfrac{a+b}{2}$.
So, let us find the average of the rational numbers $\dfrac{-3}{4}$ and $\dfrac{1}{3}$. Let us assume that average as ${{r}_{3}}$.
$\Rightarrow {{r}_{3}}=\dfrac{\dfrac{-3}{4}+\dfrac{1}{3}}{2}$.
$\Rightarrow {{r}_{3}}=\dfrac{\dfrac{-9+4}{12}}{2}$.
$\Rightarrow {{r}_{3}}=\dfrac{\dfrac{-5}{12}}{2}$.
$\Rightarrow {{r}_{3}}=\dfrac{-5}{24}$.
∴ The rational numbers that lies between the rational numbers $\dfrac{-3}{4}$ and $\dfrac{1}{3}$ is $\dfrac{-5}{24}$.
Note: We can find any rational number that lies between the given rational numbers irrespective of their average. Here we found the average of them because it is easier to calculate than to find the other rational numbers. We should know that integers are also part of rational numbers. We can also solve this problem by using $a+r\left( b-a \right)$, where a, b are the two given rational numbers and r is any value in the interval in $\left( 0,1 \right)$.
Recently Updated Pages
Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Name 10 Living and Non living things class 9 biology CBSE

What is the theme or message of the poem The road not class 9 english CBSE

Which is the smallest organ in the Body class 9 biology CBSE

Why did Aurangzeb ban the playing of the pungi Answer class 9 english CBSE

Differentiate between parenchyma collenchyma and sclerenchyma class 9 biology CBSE

Distinguish between Khadar and Bhangar class 9 social science CBSE


