
Find a point on the y-axis which is equidistant from the points A (6,5) and B (- 4,3)
Answer
569.4k+ views
Hint: In this question remember that distance between the two points is given as; $XY = \sqrt {{{\left( {c - a} \right)}^2} + {{\left( {d - b} \right)}^2}} $ here X is starting point whose coordinate is (a, b) and Y is the end point whose coordinate is (c, d), use this information to approach the solution.
Complete step-by-step solution:
Given points are A (6,5) and B (- 4,3)
Let us suppose the point on the y-axis which is equidistant from the given points be P (0, y) because as it lies on the y-axis so its x - coordinate will be 0
For point P to be equidistant from points A and B, distance between points A and P will be equal to the distance between points B and P
AP = BP (equation 1)
According to distance formula, the distance between any two points X (a, b) and Y (c, d) is given by
$XY = \sqrt {{{\left( {c - a} \right)}^2} + {{\left( {d - b} \right)}^2}} $
Now substituting the values in the above equation, we get
$AP = \sqrt {{{\left( {0 - 6} \right)}^2} + {{\left( {y - 5} \right)}^2}} = \sqrt {36 + {{\left( {y - 5} \right)}^2}} $
And $BP = \sqrt {{{\left( {0 - \left( { - 4} \right)} \right)}^2} + {{\left( {y - 3} \right)}^2}} = \sqrt {16 + {{\left( {y - 3} \right)}^2}} $
Now substituting the values of AP and BP in equation 1 we get
$\sqrt {36 + {{\left( {y - 5} \right)}^2}} = \sqrt {16 + {{\left( {y - 3} \right)}^2}} $
Squaring the above equation both sides, we have
$36 + {\left( {y - 5} \right)^2} = 16 + {\left( {y - 3} \right)^2}$
By applying the algebraic formula ${\left( {a \pm b} \right)^2} = {a^2} + {b^2} \pm 2ab$in the above equation we get
$36 + {y^2} + 25 - 10y = 16 + {y^2} + 9 - 6y$
$ \Rightarrow $$36 + 25 - 10y + 6y - 9 - 16 = {y^2} - {y^2}$
$ \Rightarrow $$36 - 4y = 0$
$ \Rightarrow $$4y = 36$
$ \Rightarrow $y = 9
Therefore, the point on the y - axis which is equidistant from the points A (6, 5) and B (- 4, 3) is P (0, 9).
Note: In these types of problems, the statement of the problem should be carefully converted into an equation, which will be used to equate the given data and the unknown parameter which we need to find out. Here, if instead of the y-axis there would have been an x-axis so the coordinates of the point assumed would be (x, 0) instead of (0, y).
Complete step-by-step solution:
Given points are A (6,5) and B (- 4,3)
Let us suppose the point on the y-axis which is equidistant from the given points be P (0, y) because as it lies on the y-axis so its x - coordinate will be 0
For point P to be equidistant from points A and B, distance between points A and P will be equal to the distance between points B and P
AP = BP (equation 1)
According to distance formula, the distance between any two points X (a, b) and Y (c, d) is given by
$XY = \sqrt {{{\left( {c - a} \right)}^2} + {{\left( {d - b} \right)}^2}} $
Now substituting the values in the above equation, we get
$AP = \sqrt {{{\left( {0 - 6} \right)}^2} + {{\left( {y - 5} \right)}^2}} = \sqrt {36 + {{\left( {y - 5} \right)}^2}} $
And $BP = \sqrt {{{\left( {0 - \left( { - 4} \right)} \right)}^2} + {{\left( {y - 3} \right)}^2}} = \sqrt {16 + {{\left( {y - 3} \right)}^2}} $
Now substituting the values of AP and BP in equation 1 we get
$\sqrt {36 + {{\left( {y - 5} \right)}^2}} = \sqrt {16 + {{\left( {y - 3} \right)}^2}} $
Squaring the above equation both sides, we have
$36 + {\left( {y - 5} \right)^2} = 16 + {\left( {y - 3} \right)^2}$
By applying the algebraic formula ${\left( {a \pm b} \right)^2} = {a^2} + {b^2} \pm 2ab$in the above equation we get
$36 + {y^2} + 25 - 10y = 16 + {y^2} + 9 - 6y$
$ \Rightarrow $$36 + 25 - 10y + 6y - 9 - 16 = {y^2} - {y^2}$
$ \Rightarrow $$36 - 4y = 0$
$ \Rightarrow $$4y = 36$
$ \Rightarrow $y = 9
Therefore, the point on the y - axis which is equidistant from the points A (6, 5) and B (- 4, 3) is P (0, 9).
Note: In these types of problems, the statement of the problem should be carefully converted into an equation, which will be used to equate the given data and the unknown parameter which we need to find out. Here, if instead of the y-axis there would have been an x-axis so the coordinates of the point assumed would be (x, 0) instead of (0, y).
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

