Factorise the following algebraic identity :
${(a + b)^3} - {(a - b)^3}$.
$(a){\text{ }}2b(3{a^2} + {b^{^2}})$
$(b){\text { }}b(3a + {b^{^2}})$
$(c){\text{ }}2b(3a - b)$
$(d){\text{ }}b(3{a^2} + b)$
Answer
Verified
504.6k+ views
Hint: In the above given equation, we have to find the factors of the given expression. Since, this the given expression is in the cubic form, therefore we have to use the standard identity for cubic equations${A^3} - {B^3} = (A - B)({A^2} + AB + {B^2})$and then further manipulations in the equations are made.
Complete step-by-step answer:
We have the given expression as
${(a + b)^3} - {(a - b)^3}$ … (1)
Now, we know the standard identity
${A^3} - {B^3} = (A - B)({A^2} + AB + {B^2})$.
If we compare the equation (1) with the standard identity given above, we can observe that
$A = (a + b)$ and $B = (a - b)$.
Therefore, after substituting these values in the standard identity, we get the equation as
$ = [(a + b) - (a - b)][{(a + b)^2} + (a + b)(a - b) + {(a - b)^2}]$ … (2)
Now, we know that
${(a + b)^2} = {a^2} + 2ab + {b^2}$
and ${(a - b)^2} = {a^2} - 2ab + {b^2}$.
So, after using these identities in the equation (2), we get
$ = (a + b - a + b)({a^2} + 2ab + {b^2} + (a + b)(a - b) + {a^2} - 2ab + {b^2})$
$ = (a + b - a + b)({a^2} + 2ab + {b^2} + {a^2} - ab + ab - {b^2} + {a^2} - 2ab + {b^2})$
$ = 2b(3{a^2} + {b^2})$
Hence, the correct solution is the option$(a){\text{ }}2b(3{a^2} + {b^{^2}})$.
Note: When we face such a time of questions, the key point is to have an adequate knowledge of various standard identities used like identities for quadratic equations, cubic equations, etc. With the help of these identities and some simple mathematical manipulations, the desired solution can be obtained.
Complete step-by-step answer:
We have the given expression as
${(a + b)^3} - {(a - b)^3}$ … (1)
Now, we know the standard identity
${A^3} - {B^3} = (A - B)({A^2} + AB + {B^2})$.
If we compare the equation (1) with the standard identity given above, we can observe that
$A = (a + b)$ and $B = (a - b)$.
Therefore, after substituting these values in the standard identity, we get the equation as
$ = [(a + b) - (a - b)][{(a + b)^2} + (a + b)(a - b) + {(a - b)^2}]$ … (2)
Now, we know that
${(a + b)^2} = {a^2} + 2ab + {b^2}$
and ${(a - b)^2} = {a^2} - 2ab + {b^2}$.
So, after using these identities in the equation (2), we get
$ = (a + b - a + b)({a^2} + 2ab + {b^2} + (a + b)(a - b) + {a^2} - 2ab + {b^2})$
$ = (a + b - a + b)({a^2} + 2ab + {b^2} + {a^2} - ab + ab - {b^2} + {a^2} - 2ab + {b^2})$
$ = 2b(3{a^2} + {b^2})$
Hence, the correct solution is the option$(a){\text{ }}2b(3{a^2} + {b^{^2}})$.
Note: When we face such a time of questions, the key point is to have an adequate knowledge of various standard identities used like identities for quadratic equations, cubic equations, etc. With the help of these identities and some simple mathematical manipulations, the desired solution can be obtained.
Recently Updated Pages
Master Class 9 Science: Engaging Questions & Answers for Success
Master Class 9 English: Engaging Questions & Answers for Success
Class 9 Question and Answer - Your Ultimate Solutions Guide
Master Class 9 Maths: Engaging Questions & Answers for Success
Master Class 9 General Knowledge: Engaging Questions & Answers for Success
Master Class 9 Social Science: Engaging Questions & Answers for Success
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
What is the role of NGOs during disaster managemen class 9 social science CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
What is pollution? How many types of pollution? Define it
Voters list is known as A Ticket B Nomination form class 9 social science CBSE