Factorise the following
$12{\left( {{x^2} + 7x} \right)^2} - 8\left( {{x^2} + 7x} \right)\left( {2x - 1} \right) - 15{\left( {2x - 1} \right)^2}$.
Answer
Verified
458.1k+ views
Hint: Here, we have to factorise $12{\left( {{x^2} + 7x} \right)^2} - 8\left( {{x^2} + 7x} \right)\left( {2x - 1} \right) - 15{\left( {2x - 1} \right)^2}$ which is a biquadratic expression. First of all we suppose $\left( {{x^2} + 7x} \right) = a$ and $\left( {2x - 1} \right) = b$, then put these values in above expression and factorise it. After that put the value of $a$ and $b$ in factored terms and, we will get quadratic so again factorise it to reach a final answer.
Complete step-by-step solution:
Here, the given expression is $12{\left( {{x^2} + 7x} \right)^2} - 8\left( {{x^2} + 7x} \right)\left( {2x - 1} \right) - 15{\left( {2x - 1} \right)^2}$.
Suppose $\left( {{x^2} + 7x} \right) = a$and $\left( {2x - 1} \right) = b$, putting these values in above given expression.
We can write, $12{a^2} - 8ab - 15{b^2}$.
Now, to factorise the expression, break $ - 8ab$ in two parts such that their product is $ - 180{a^2}{b^2}$.
We can write $ - 8ab$ as $ - 18ab + 10ab$because its product is $ - 180{a^2}{b^2}$.
So, we can write expression as,
$ = 12{a^2} - 18ab + 10ab - 15{b^2}$
Now, take $6a$ as common from the first two terms and $5b$ as common from the last two terms. So, after applying this we can write,
$ = 6a\left( {2a - 3b} \right) + 5b\left( {2a - 3b} \right)$
Now, taking $\left( {2a - 3b} \right)$ common from both terms, we can write
$ = \left( {2a - 3b} \right)\left( {6a + 5b} \right)$
Putting the value of $a$ and $b$ in above factorisation, we can write
$ = \left( {2\left( {{x^2} + 7x} \right) - 3\left( {2x - 1} \right)} \right)\left( {6\left( {{x^2} + 7x} \right) + 5\left( {2x - 1} \right)} \right)$
$
= \left( {2{x^2} + 14x - 6x + 3} \right)\left( {6{x^2} + 42x + 10x - 5} \right) \\
= \left( {2{x^2} + 8x + 3} \right)\left( {6{x^2} + 52 - 5} \right)
$
Now, these two terms $2{x^2} + 8x + 3$ and $6{x^2} + 52x - 5$ are quadratic which can be factored to linear terms.
Now, to factorise these terms find the root using the “Sridharacharya” method then apply this method for $2{x^2} + 8x + 3$.
$
\Rightarrow x = \dfrac{{ - 8 \pm \sqrt {64 - 4 \times 2 \times 3} }}{2} \\
\Rightarrow x = \dfrac{{ - 8 \pm \sqrt {40} }}{2} \\
\Rightarrow x = \dfrac{{2\left( { - 4 \pm \sqrt {10} } \right)}}{2} = - 4 \pm \sqrt {10}
$
So, factor of $2{x^2} + 8x + 3$ is $\left( {x - \left( { - 4 + \sqrt {10} } \right)} \right)$ and $\left( {x - \left( { - 4 - \sqrt {10} } \right)} \right)$.
Now, similarly factorise other terms $6{x^2} + 52x - 5$, by Sridharacharya method.
$
\Rightarrow x = \dfrac{{ - 52 \pm \sqrt {{{\left( {52} \right)}^2} - 4 \times 6 \times \left( { - 5} \right)} }}{2} \\
\Rightarrow x = \dfrac{{ - 52 \pm \sqrt {2704 + 120} }}{2} \\
\Rightarrow x = \dfrac{{ - 52 \pm \sqrt {2824} }}{2} \\
\Rightarrow x = \dfrac{{2\left( { - 26 \pm \sqrt {706} } \right)}}{2} = \left( { - 26 \pm \sqrt {706} } \right)
$
So, factors of $6{x^2} + 52x - 5$ is $\left( {x - \left( { - 26 - \sqrt {706} } \right)} \right)$ and $\left( {x - \left( { - 26 + \sqrt {706} } \right)} \right)$.
Thus, $12{\left( {{x^2} + 7x} \right)^2} - 8\left( {{x^2} + 7x} \right)\left( {2x - 1} \right) - 15{\left( {2x - 1} \right)^2}$ can be factored as
Therefore $ 12{\left( {{x^2} + 7x} \right)^2} - 8\left( {{x^2} + 7x} \right)\left( {2x - 1} \right) - 15{\left( {2x - 1} \right)^2} = \left( {x - \left( { - 4 - \sqrt {10} } \right)} \right)\left( {x - \left( { - 4 + \sqrt {10} } \right)} \right)\left( {x - \left( { - 26 - \sqrt {706} } \right)} \right)\left( {x - \left( { - 26 + \sqrt {706} } \right)} \right)$
Note: “Sridharacharya” method is an ancient method to find the roots of a quadratic equation. Suppose $a{x^2} + bx + c = 0$ is a quadratic equation and we have to find its roots then, by this method we can write, $x = \dfrac{{ - b \pm \sqrt D }}{2}$ here, $D = {b^2} - 4ac$. And $\left( {x - \left( {\dfrac{{ - b \pm \sqrt D }}{2}} \right)} \right)$ are the factors of the expression $a{x^2} + bx + c$.
Complete step-by-step solution:
Here, the given expression is $12{\left( {{x^2} + 7x} \right)^2} - 8\left( {{x^2} + 7x} \right)\left( {2x - 1} \right) - 15{\left( {2x - 1} \right)^2}$.
Suppose $\left( {{x^2} + 7x} \right) = a$and $\left( {2x - 1} \right) = b$, putting these values in above given expression.
We can write, $12{a^2} - 8ab - 15{b^2}$.
Now, to factorise the expression, break $ - 8ab$ in two parts such that their product is $ - 180{a^2}{b^2}$.
We can write $ - 8ab$ as $ - 18ab + 10ab$because its product is $ - 180{a^2}{b^2}$.
So, we can write expression as,
$ = 12{a^2} - 18ab + 10ab - 15{b^2}$
Now, take $6a$ as common from the first two terms and $5b$ as common from the last two terms. So, after applying this we can write,
$ = 6a\left( {2a - 3b} \right) + 5b\left( {2a - 3b} \right)$
Now, taking $\left( {2a - 3b} \right)$ common from both terms, we can write
$ = \left( {2a - 3b} \right)\left( {6a + 5b} \right)$
Putting the value of $a$ and $b$ in above factorisation, we can write
$ = \left( {2\left( {{x^2} + 7x} \right) - 3\left( {2x - 1} \right)} \right)\left( {6\left( {{x^2} + 7x} \right) + 5\left( {2x - 1} \right)} \right)$
$
= \left( {2{x^2} + 14x - 6x + 3} \right)\left( {6{x^2} + 42x + 10x - 5} \right) \\
= \left( {2{x^2} + 8x + 3} \right)\left( {6{x^2} + 52 - 5} \right)
$
Now, these two terms $2{x^2} + 8x + 3$ and $6{x^2} + 52x - 5$ are quadratic which can be factored to linear terms.
Now, to factorise these terms find the root using the “Sridharacharya” method then apply this method for $2{x^2} + 8x + 3$.
$
\Rightarrow x = \dfrac{{ - 8 \pm \sqrt {64 - 4 \times 2 \times 3} }}{2} \\
\Rightarrow x = \dfrac{{ - 8 \pm \sqrt {40} }}{2} \\
\Rightarrow x = \dfrac{{2\left( { - 4 \pm \sqrt {10} } \right)}}{2} = - 4 \pm \sqrt {10}
$
So, factor of $2{x^2} + 8x + 3$ is $\left( {x - \left( { - 4 + \sqrt {10} } \right)} \right)$ and $\left( {x - \left( { - 4 - \sqrt {10} } \right)} \right)$.
Now, similarly factorise other terms $6{x^2} + 52x - 5$, by Sridharacharya method.
$
\Rightarrow x = \dfrac{{ - 52 \pm \sqrt {{{\left( {52} \right)}^2} - 4 \times 6 \times \left( { - 5} \right)} }}{2} \\
\Rightarrow x = \dfrac{{ - 52 \pm \sqrt {2704 + 120} }}{2} \\
\Rightarrow x = \dfrac{{ - 52 \pm \sqrt {2824} }}{2} \\
\Rightarrow x = \dfrac{{2\left( { - 26 \pm \sqrt {706} } \right)}}{2} = \left( { - 26 \pm \sqrt {706} } \right)
$
So, factors of $6{x^2} + 52x - 5$ is $\left( {x - \left( { - 26 - \sqrt {706} } \right)} \right)$ and $\left( {x - \left( { - 26 + \sqrt {706} } \right)} \right)$.
Thus, $12{\left( {{x^2} + 7x} \right)^2} - 8\left( {{x^2} + 7x} \right)\left( {2x - 1} \right) - 15{\left( {2x - 1} \right)^2}$ can be factored as
Therefore $ 12{\left( {{x^2} + 7x} \right)^2} - 8\left( {{x^2} + 7x} \right)\left( {2x - 1} \right) - 15{\left( {2x - 1} \right)^2} = \left( {x - \left( { - 4 - \sqrt {10} } \right)} \right)\left( {x - \left( { - 4 + \sqrt {10} } \right)} \right)\left( {x - \left( { - 26 - \sqrt {706} } \right)} \right)\left( {x - \left( { - 26 + \sqrt {706} } \right)} \right)$
Note: “Sridharacharya” method is an ancient method to find the roots of a quadratic equation. Suppose $a{x^2} + bx + c = 0$ is a quadratic equation and we have to find its roots then, by this method we can write, $x = \dfrac{{ - b \pm \sqrt D }}{2}$ here, $D = {b^2} - 4ac$. And $\left( {x - \left( {\dfrac{{ - b \pm \sqrt D }}{2}} \right)} \right)$ are the factors of the expression $a{x^2} + bx + c$.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success
Master Class 10 Computer Science: Engaging Questions & Answers for Success
Master Class 10 Science: Engaging Questions & Answers for Success
Master Class 10 Social Science: Engaging Questions & Answers for Success
Master Class 10 Maths: Engaging Questions & Answers for Success
Master Class 10 English: Engaging Questions & Answers for Success
Trending doubts
Assertion The planet Neptune appears blue in colour class 10 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The term disaster is derived from language AGreek BArabic class 10 social science CBSE
Imagine that you have the opportunity to interview class 10 english CBSE
10 examples of evaporation in daily life with explanations
Differentiate between natural and artificial ecosy class 10 biology CBSE