Answer
Verified
407.1k+ views
Hint: Given polynomial is of degree 2. Polynomials of degree 2 are known as Quadratic polynomials. Quadratic polynomials can be factored by the help of splitting the middle term method. In this method, the middle term is split into two terms in such a way that the polynomial remains unchanged.
Complete step-by-step solution:
For factorising the given quadratic polynomial $\left( {3{x^2} - 5x - 2} \right)$ , we can use the splitting method in which the middle term is split into two terms such that the sum of the terms gives us the original middle term and product of the terms gives us the product of the constant term and coefficient of ${x^2}$.
So, $\left( {3{x^2} - 5x - 2} \right)$
$ = $$3{x^2} - \left( {6 - 1} \right)x - 2$
We split the middle term $ - 5x$ into two terms $ - 6x$ and $x$ since the product of these terms, $ - 6{x^2}$ is equal to the product of the constant term and coefficient of ${x^2}$ and sum of these terms gives us the original middle term, $ - 5x$.
$ = $$3{x^2} - 6x + x - 2$
$ = $\[3x\left( {x - 2} \right) + \left( {x - 2} \right)\]
$ = $\[\left( {3x + 1} \right)\left( {x - 2} \right)\]
So, the factored form of the quadratic polynomial $\left( {3{x^2} - 5x - 2} \right)$ is \[\left( {3x + 1} \right)\left( {x - 2} \right)\].
Note: Splitting of the middle term can be a tedious process at times when the product of the constant term and coefficient of ${x^2}$ is a large number with a large number of divisors. Special care should be taken in such cases. Similar to quadratic polynomials, quadratic equations can also be solved using factorisation methods. Besides factorisation, there are various methods to solve quadratic equations such as completing the square method and using the Quadratic formula.
Complete step-by-step solution:
For factorising the given quadratic polynomial $\left( {3{x^2} - 5x - 2} \right)$ , we can use the splitting method in which the middle term is split into two terms such that the sum of the terms gives us the original middle term and product of the terms gives us the product of the constant term and coefficient of ${x^2}$.
So, $\left( {3{x^2} - 5x - 2} \right)$
$ = $$3{x^2} - \left( {6 - 1} \right)x - 2$
We split the middle term $ - 5x$ into two terms $ - 6x$ and $x$ since the product of these terms, $ - 6{x^2}$ is equal to the product of the constant term and coefficient of ${x^2}$ and sum of these terms gives us the original middle term, $ - 5x$.
$ = $$3{x^2} - 6x + x - 2$
$ = $\[3x\left( {x - 2} \right) + \left( {x - 2} \right)\]
$ = $\[\left( {3x + 1} \right)\left( {x - 2} \right)\]
So, the factored form of the quadratic polynomial $\left( {3{x^2} - 5x - 2} \right)$ is \[\left( {3x + 1} \right)\left( {x - 2} \right)\].
Note: Splitting of the middle term can be a tedious process at times when the product of the constant term and coefficient of ${x^2}$ is a large number with a large number of divisors. Special care should be taken in such cases. Similar to quadratic polynomials, quadratic equations can also be solved using factorisation methods. Besides factorisation, there are various methods to solve quadratic equations such as completing the square method and using the Quadratic formula.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Choose the antonym of the word given below Furious class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE