Factorise: $8{a^3} + 125{b^3} - 64{c^3} + 120abc$
Answer
384.3k+ views
Hint- Here, we will be using the formula for $\left( {{x^3} + {y^3} + {z^3} - 3xyz} \right)$.
The given expression which needs to get factorised as $8{a^3} + 125{b^3} - 64{c^3} + 120abc$
As we know that ${x^3} + {y^3} + {z^3} - 3xyz = \left( {x + y + z} \right)\left( {{x^2} + {y^2} + {z^2} - xy - yz - zx} \right){\text{ }} \to {\text{(1)}}$
The given expression can be represented in the form of LHS of above equation as
$8{a^3} + 125{b^3} - 64{c^3} + 120abc = {\left( {2a} \right)^3} + {\left( {5b} \right)^3} + {\left( { - 4c} \right)^3} - 3\left( {2a} \right)\left( {5b} \right)\left( { - 4c} \right)$
Now replace $2a$ by $x$, $5b$ by $y$ and $ - 4c$ by $z$, we get
$8{a^3} + 125{b^3} - 64{c^3} + 120abc = {x^3} + {y^3} + {z^3} - 3xyz$
Using equation (1), the above can be written as
$8{a^3} + 125{b^3} - 64{c^3} + 120abc = {x^3} + {y^3} + {z^3} - 3xyz = \left( {x + y + z} \right)\left( {{x^2} + {y^2} + {z^2} - xy - yz - zx} \right)$
Now, let us back substitute the values of $x$, $y$ and $z$ in the above expression
$
8{a^3} + 125{b^3} - 64{c^3} + 120abc = \left( {2a + 5b - 4c} \right)\left[ {{{\left( {2a} \right)}^2} + {{\left( {5b} \right)}^2} + {{\left( { - 4c} \right)}^2} - \left( {2a} \right)\left( {5b} \right) - \left( {5b} \right)\left( { - 4c} \right) - \left( { - 4c} \right)\left( {2a} \right)} \right] \\
\Rightarrow 8{a^3} + 125{b^3} - 64{c^3} + 120abc = \left( {2a + 5b - 4c} \right)\left( {4{a^2} + 25{b^2} + 16{c^2} - 10ab + 20bc + 8ca} \right) \\
$
Therefore, as shown above the given expression is factorised into two factors.
Note- In these types of problems, we convert the given expression in a form which can be easily simplified with a help of a known formula. Here, we converted it in the form of $\left( {{x^3} + {y^3} + {z^3} - 3xyz} \right)$ and then its formula is used for factorisation.
The given expression which needs to get factorised as $8{a^3} + 125{b^3} - 64{c^3} + 120abc$
As we know that ${x^3} + {y^3} + {z^3} - 3xyz = \left( {x + y + z} \right)\left( {{x^2} + {y^2} + {z^2} - xy - yz - zx} \right){\text{ }} \to {\text{(1)}}$
The given expression can be represented in the form of LHS of above equation as
$8{a^3} + 125{b^3} - 64{c^3} + 120abc = {\left( {2a} \right)^3} + {\left( {5b} \right)^3} + {\left( { - 4c} \right)^3} - 3\left( {2a} \right)\left( {5b} \right)\left( { - 4c} \right)$
Now replace $2a$ by $x$, $5b$ by $y$ and $ - 4c$ by $z$, we get
$8{a^3} + 125{b^3} - 64{c^3} + 120abc = {x^3} + {y^3} + {z^3} - 3xyz$
Using equation (1), the above can be written as
$8{a^3} + 125{b^3} - 64{c^3} + 120abc = {x^3} + {y^3} + {z^3} - 3xyz = \left( {x + y + z} \right)\left( {{x^2} + {y^2} + {z^2} - xy - yz - zx} \right)$
Now, let us back substitute the values of $x$, $y$ and $z$ in the above expression
$
8{a^3} + 125{b^3} - 64{c^3} + 120abc = \left( {2a + 5b - 4c} \right)\left[ {{{\left( {2a} \right)}^2} + {{\left( {5b} \right)}^2} + {{\left( { - 4c} \right)}^2} - \left( {2a} \right)\left( {5b} \right) - \left( {5b} \right)\left( { - 4c} \right) - \left( { - 4c} \right)\left( {2a} \right)} \right] \\
\Rightarrow 8{a^3} + 125{b^3} - 64{c^3} + 120abc = \left( {2a + 5b - 4c} \right)\left( {4{a^2} + 25{b^2} + 16{c^2} - 10ab + 20bc + 8ca} \right) \\
$
Therefore, as shown above the given expression is factorised into two factors.
Note- In these types of problems, we convert the given expression in a form which can be easily simplified with a help of a known formula. Here, we converted it in the form of $\left( {{x^3} + {y^3} + {z^3} - 3xyz} \right)$ and then its formula is used for factorisation.
Recently Updated Pages
Define absolute refractive index of a medium

Find out what do the algal bloom and redtides sign class 10 biology CBSE

Prove that the function fleft x right xn is continuous class 12 maths CBSE

Find the values of other five trigonometric functions class 10 maths CBSE

Find the values of other five trigonometric ratios class 10 maths CBSE

Find the values of other five trigonometric functions class 10 maths CBSE

Trending doubts
Which country launched the first satellite in space class 11 physics CBSE

Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

What is the past tense of read class 10 english CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

What is pollution? How many types of pollution? Define it

Give 10 examples for herbs , shrubs , climbers , creepers

Write a letter to the principal requesting him to grant class 10 english CBSE
