Answer
Verified
476.7k+ views
Hint- Here, we will be using the formula for $\left( {{x^3} + {y^3} + {z^3} - 3xyz} \right)$.
The given expression which needs to get factorised as $8{a^3} + 125{b^3} - 64{c^3} + 120abc$
As we know that ${x^3} + {y^3} + {z^3} - 3xyz = \left( {x + y + z} \right)\left( {{x^2} + {y^2} + {z^2} - xy - yz - zx} \right){\text{ }} \to {\text{(1)}}$
The given expression can be represented in the form of LHS of above equation as
$8{a^3} + 125{b^3} - 64{c^3} + 120abc = {\left( {2a} \right)^3} + {\left( {5b} \right)^3} + {\left( { - 4c} \right)^3} - 3\left( {2a} \right)\left( {5b} \right)\left( { - 4c} \right)$
Now replace $2a$ by $x$, $5b$ by $y$ and $ - 4c$ by $z$, we get
$8{a^3} + 125{b^3} - 64{c^3} + 120abc = {x^3} + {y^3} + {z^3} - 3xyz$
Using equation (1), the above can be written as
$8{a^3} + 125{b^3} - 64{c^3} + 120abc = {x^3} + {y^3} + {z^3} - 3xyz = \left( {x + y + z} \right)\left( {{x^2} + {y^2} + {z^2} - xy - yz - zx} \right)$
Now, let us back substitute the values of $x$, $y$ and $z$ in the above expression
$
8{a^3} + 125{b^3} - 64{c^3} + 120abc = \left( {2a + 5b - 4c} \right)\left[ {{{\left( {2a} \right)}^2} + {{\left( {5b} \right)}^2} + {{\left( { - 4c} \right)}^2} - \left( {2a} \right)\left( {5b} \right) - \left( {5b} \right)\left( { - 4c} \right) - \left( { - 4c} \right)\left( {2a} \right)} \right] \\
\Rightarrow 8{a^3} + 125{b^3} - 64{c^3} + 120abc = \left( {2a + 5b - 4c} \right)\left( {4{a^2} + 25{b^2} + 16{c^2} - 10ab + 20bc + 8ca} \right) \\
$
Therefore, as shown above the given expression is factorised into two factors.
Note- In these types of problems, we convert the given expression in a form which can be easily simplified with a help of a known formula. Here, we converted it in the form of $\left( {{x^3} + {y^3} + {z^3} - 3xyz} \right)$ and then its formula is used for factorisation.
The given expression which needs to get factorised as $8{a^3} + 125{b^3} - 64{c^3} + 120abc$
As we know that ${x^3} + {y^3} + {z^3} - 3xyz = \left( {x + y + z} \right)\left( {{x^2} + {y^2} + {z^2} - xy - yz - zx} \right){\text{ }} \to {\text{(1)}}$
The given expression can be represented in the form of LHS of above equation as
$8{a^3} + 125{b^3} - 64{c^3} + 120abc = {\left( {2a} \right)^3} + {\left( {5b} \right)^3} + {\left( { - 4c} \right)^3} - 3\left( {2a} \right)\left( {5b} \right)\left( { - 4c} \right)$
Now replace $2a$ by $x$, $5b$ by $y$ and $ - 4c$ by $z$, we get
$8{a^3} + 125{b^3} - 64{c^3} + 120abc = {x^3} + {y^3} + {z^3} - 3xyz$
Using equation (1), the above can be written as
$8{a^3} + 125{b^3} - 64{c^3} + 120abc = {x^3} + {y^3} + {z^3} - 3xyz = \left( {x + y + z} \right)\left( {{x^2} + {y^2} + {z^2} - xy - yz - zx} \right)$
Now, let us back substitute the values of $x$, $y$ and $z$ in the above expression
$
8{a^3} + 125{b^3} - 64{c^3} + 120abc = \left( {2a + 5b - 4c} \right)\left[ {{{\left( {2a} \right)}^2} + {{\left( {5b} \right)}^2} + {{\left( { - 4c} \right)}^2} - \left( {2a} \right)\left( {5b} \right) - \left( {5b} \right)\left( { - 4c} \right) - \left( { - 4c} \right)\left( {2a} \right)} \right] \\
\Rightarrow 8{a^3} + 125{b^3} - 64{c^3} + 120abc = \left( {2a + 5b - 4c} \right)\left( {4{a^2} + 25{b^2} + 16{c^2} - 10ab + 20bc + 8ca} \right) \\
$
Therefore, as shown above the given expression is factorised into two factors.
Note- In these types of problems, we convert the given expression in a form which can be easily simplified with a help of a known formula. Here, we converted it in the form of $\left( {{x^3} + {y^3} + {z^3} - 3xyz} \right)$ and then its formula is used for factorisation.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Which are the Top 10 Largest Countries of the World?
One cusec is equal to how many liters class 8 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The mountain range which stretches from Gujarat in class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths