# Factorise: $8{a^3} + 125{b^3} - 64{c^3} + 120abc$

Last updated date: 22nd Mar 2023

•

Total views: 308.4k

•

Views today: 8.87k

Answer

Verified

308.4k+ views

Hint- Here, we will be using the formula for $\left( {{x^3} + {y^3} + {z^3} - 3xyz} \right)$.

The given expression which needs to get factorised as $8{a^3} + 125{b^3} - 64{c^3} + 120abc$

As we know that ${x^3} + {y^3} + {z^3} - 3xyz = \left( {x + y + z} \right)\left( {{x^2} + {y^2} + {z^2} - xy - yz - zx} \right){\text{ }} \to {\text{(1)}}$

The given expression can be represented in the form of LHS of above equation as

$8{a^3} + 125{b^3} - 64{c^3} + 120abc = {\left( {2a} \right)^3} + {\left( {5b} \right)^3} + {\left( { - 4c} \right)^3} - 3\left( {2a} \right)\left( {5b} \right)\left( { - 4c} \right)$

Now replace $2a$ by $x$, $5b$ by $y$ and $ - 4c$ by $z$, we get

$8{a^3} + 125{b^3} - 64{c^3} + 120abc = {x^3} + {y^3} + {z^3} - 3xyz$

Using equation (1), the above can be written as

$8{a^3} + 125{b^3} - 64{c^3} + 120abc = {x^3} + {y^3} + {z^3} - 3xyz = \left( {x + y + z} \right)\left( {{x^2} + {y^2} + {z^2} - xy - yz - zx} \right)$

Now, let us back substitute the values of $x$, $y$ and $z$ in the above expression

$

8{a^3} + 125{b^3} - 64{c^3} + 120abc = \left( {2a + 5b - 4c} \right)\left[ {{{\left( {2a} \right)}^2} + {{\left( {5b} \right)}^2} + {{\left( { - 4c} \right)}^2} - \left( {2a} \right)\left( {5b} \right) - \left( {5b} \right)\left( { - 4c} \right) - \left( { - 4c} \right)\left( {2a} \right)} \right] \\

\Rightarrow 8{a^3} + 125{b^3} - 64{c^3} + 120abc = \left( {2a + 5b - 4c} \right)\left( {4{a^2} + 25{b^2} + 16{c^2} - 10ab + 20bc + 8ca} \right) \\

$

Therefore, as shown above the given expression is factorised into two factors.

Note- In these types of problems, we convert the given expression in a form which can be easily simplified with a help of a known formula. Here, we converted it in the form of $\left( {{x^3} + {y^3} + {z^3} - 3xyz} \right)$ and then its formula is used for factorisation.

The given expression which needs to get factorised as $8{a^3} + 125{b^3} - 64{c^3} + 120abc$

As we know that ${x^3} + {y^3} + {z^3} - 3xyz = \left( {x + y + z} \right)\left( {{x^2} + {y^2} + {z^2} - xy - yz - zx} \right){\text{ }} \to {\text{(1)}}$

The given expression can be represented in the form of LHS of above equation as

$8{a^3} + 125{b^3} - 64{c^3} + 120abc = {\left( {2a} \right)^3} + {\left( {5b} \right)^3} + {\left( { - 4c} \right)^3} - 3\left( {2a} \right)\left( {5b} \right)\left( { - 4c} \right)$

Now replace $2a$ by $x$, $5b$ by $y$ and $ - 4c$ by $z$, we get

$8{a^3} + 125{b^3} - 64{c^3} + 120abc = {x^3} + {y^3} + {z^3} - 3xyz$

Using equation (1), the above can be written as

$8{a^3} + 125{b^3} - 64{c^3} + 120abc = {x^3} + {y^3} + {z^3} - 3xyz = \left( {x + y + z} \right)\left( {{x^2} + {y^2} + {z^2} - xy - yz - zx} \right)$

Now, let us back substitute the values of $x$, $y$ and $z$ in the above expression

$

8{a^3} + 125{b^3} - 64{c^3} + 120abc = \left( {2a + 5b - 4c} \right)\left[ {{{\left( {2a} \right)}^2} + {{\left( {5b} \right)}^2} + {{\left( { - 4c} \right)}^2} - \left( {2a} \right)\left( {5b} \right) - \left( {5b} \right)\left( { - 4c} \right) - \left( { - 4c} \right)\left( {2a} \right)} \right] \\

\Rightarrow 8{a^3} + 125{b^3} - 64{c^3} + 120abc = \left( {2a + 5b - 4c} \right)\left( {4{a^2} + 25{b^2} + 16{c^2} - 10ab + 20bc + 8ca} \right) \\

$

Therefore, as shown above the given expression is factorised into two factors.

Note- In these types of problems, we convert the given expression in a form which can be easily simplified with a help of a known formula. Here, we converted it in the form of $\left( {{x^3} + {y^3} + {z^3} - 3xyz} \right)$ and then its formula is used for factorisation.

Recently Updated Pages

If a spring has a period T and is cut into the n equal class 11 physics CBSE

A planet moves around the sun in nearly circular orbit class 11 physics CBSE

In any triangle AB2 BC4 CA3 and D is the midpoint of class 11 maths JEE_Main

In a Delta ABC 2asin dfracAB+C2 is equal to IIT Screening class 11 maths JEE_Main

If in aDelta ABCangle A 45circ angle C 60circ then class 11 maths JEE_Main

If in a triangle rmABC side a sqrt 3 + 1rmcm and angle class 11 maths JEE_Main

Trending doubts

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Epipetalous and syngenesious stamens occur in aSolanaceae class 11 biology CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

A Short Paragraph on our Country India