
How do you factor ${x^4} + 2{x^3}y - 3{x^2}{y^2} - 4x{y^3} - {y^4}$?
Answer
538.8k+ views
Hint: This problem deals with factoring the given expression which is a polynomial of degree four. This polynomial is an expression with two variables \[x\] and \[y\]. We have to factorize the given expression in such a way that with its zeroes. So here first we factorize the four-degree polynomial into two degree polynomials and then factorize further.
Complete step-by-step solution:
The given expression ${x^4} + 2{x^3}y - 3{x^2}{y^2} - 4x{y^3} - {y^4}$ is equated to zero, as considered below:
$ \Rightarrow {x^4} + 2{x^3}y - 3{x^2}{y^2} - 4x{y^3} - {y^4} = 0$
First solving the equation with only $x$ terms as shown below, that is by considering the $y$ terms as 1.
$ \Rightarrow {x^4} + 2{x^3} - 3{x^2} - 4x - 1 = 0$
$ \Rightarrow \left( {{x^2} - x - 1} \right)\left( {{x^2} + 3x + 1} \right) = 0$
Here equating both the expressions to zero, as shown below to obtain the factors of $x$.
\[ \Rightarrow \left( {{x^2} - x - 1} \right) = 0\]
Now to find the roots of $x$ by using the formula of quadratic roots formula:
\[ \Rightarrow x = \dfrac{{ - \left( { - 1} \right) \pm \sqrt {{{\left( { - 1} \right)}^2} - 4\left( 1 \right)\left( { - 1} \right)} }}{{2\left( 1 \right)}}\]
\[ \Rightarrow x = \dfrac{{1 \pm \sqrt {1 + 5} }}{2}\]
Now the second expression is equated as shown below:
\[ \Rightarrow \left( {{x^2} + 3x + 1} \right) = 0\]
$ \Rightarrow x = \dfrac{{ - 3 \pm \sqrt {{3^2} - 4\left( 1 \right)\left( 1 \right)} }}{{2\left( 1 \right)}}$
On simplifying the expression as shown below:
$ \Rightarrow x = \dfrac{{ - 3 \pm \sqrt 5 }}{2}$
Now factoring the expression ${x^4} + 2{x^3}y - 3{x^2}{y^2} - 4x{y^3} - {y^4}$ with the $y$ terms:
$ \Rightarrow {x^4} + 2{x^3}y - 3{x^2}{y^2} - 4x{y^3} - {y^4} = 0$
$ \Rightarrow \left( {{x^2} - xy - {y^2}} \right)\left( {{x^2} + 3xy + {y^2}} \right) = 0$
We know that the roots of $\left( {{x^2} - x - 1} \right) = 0$ are \[\dfrac{{1 \pm \sqrt {1 + 5} }}{2}\] , so the roots of the expression $\left( {{x^2} - xy - {y^2}} \right) = 0$ are equal to \[\dfrac{{1 \pm \sqrt {1 + 5} }}{2}y\].
Similarly the roots of the expression $\left( {{x^2} + 3xy + {y^2}} \right) = 0$ are equal to $\dfrac{{ - 3 \pm \sqrt 5 }}{2}y$.
$ \Rightarrow \left( {{x^2} - xy - {y^2}} \right)\left( {{x^2} + 3xy + {y^2}} \right) = 0$
$ \Rightarrow \left( {x - \dfrac{{1 + \sqrt {1 + 5} }}{2}y} \right)\left( {x - \dfrac{{1 - \sqrt {1 + 5} }}{2}y} \right)\left( {x - \dfrac{{ - 3 + \sqrt 5 }}{2}y} \right)\left( {x - \dfrac{{ - 3 - \sqrt 5 }}{2}y} \right) = 0$
Note: Please note that this problem deals with factoring the expression with the help of the roots of the quadratic equation formula. If the quadratic equation is expressed in the form of \[a{x^2} + bx + c = 0\], then the roots of the quadratic equation are given by the formula of the quadratic equation which is given by:
$x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$.
Complete step-by-step solution:
The given expression ${x^4} + 2{x^3}y - 3{x^2}{y^2} - 4x{y^3} - {y^4}$ is equated to zero, as considered below:
$ \Rightarrow {x^4} + 2{x^3}y - 3{x^2}{y^2} - 4x{y^3} - {y^4} = 0$
First solving the equation with only $x$ terms as shown below, that is by considering the $y$ terms as 1.
$ \Rightarrow {x^4} + 2{x^3} - 3{x^2} - 4x - 1 = 0$
$ \Rightarrow \left( {{x^2} - x - 1} \right)\left( {{x^2} + 3x + 1} \right) = 0$
Here equating both the expressions to zero, as shown below to obtain the factors of $x$.
\[ \Rightarrow \left( {{x^2} - x - 1} \right) = 0\]
Now to find the roots of $x$ by using the formula of quadratic roots formula:
\[ \Rightarrow x = \dfrac{{ - \left( { - 1} \right) \pm \sqrt {{{\left( { - 1} \right)}^2} - 4\left( 1 \right)\left( { - 1} \right)} }}{{2\left( 1 \right)}}\]
\[ \Rightarrow x = \dfrac{{1 \pm \sqrt {1 + 5} }}{2}\]
Now the second expression is equated as shown below:
\[ \Rightarrow \left( {{x^2} + 3x + 1} \right) = 0\]
$ \Rightarrow x = \dfrac{{ - 3 \pm \sqrt {{3^2} - 4\left( 1 \right)\left( 1 \right)} }}{{2\left( 1 \right)}}$
On simplifying the expression as shown below:
$ \Rightarrow x = \dfrac{{ - 3 \pm \sqrt 5 }}{2}$
Now factoring the expression ${x^4} + 2{x^3}y - 3{x^2}{y^2} - 4x{y^3} - {y^4}$ with the $y$ terms:
$ \Rightarrow {x^4} + 2{x^3}y - 3{x^2}{y^2} - 4x{y^3} - {y^4} = 0$
$ \Rightarrow \left( {{x^2} - xy - {y^2}} \right)\left( {{x^2} + 3xy + {y^2}} \right) = 0$
We know that the roots of $\left( {{x^2} - x - 1} \right) = 0$ are \[\dfrac{{1 \pm \sqrt {1 + 5} }}{2}\] , so the roots of the expression $\left( {{x^2} - xy - {y^2}} \right) = 0$ are equal to \[\dfrac{{1 \pm \sqrt {1 + 5} }}{2}y\].
Similarly the roots of the expression $\left( {{x^2} + 3xy + {y^2}} \right) = 0$ are equal to $\dfrac{{ - 3 \pm \sqrt 5 }}{2}y$.
$ \Rightarrow \left( {{x^2} - xy - {y^2}} \right)\left( {{x^2} + 3xy + {y^2}} \right) = 0$
$ \Rightarrow \left( {x - \dfrac{{1 + \sqrt {1 + 5} }}{2}y} \right)\left( {x - \dfrac{{1 - \sqrt {1 + 5} }}{2}y} \right)\left( {x - \dfrac{{ - 3 + \sqrt 5 }}{2}y} \right)\left( {x - \dfrac{{ - 3 - \sqrt 5 }}{2}y} \right) = 0$
Note: Please note that this problem deals with factoring the expression with the help of the roots of the quadratic equation formula. If the quadratic equation is expressed in the form of \[a{x^2} + bx + c = 0\], then the roots of the quadratic equation are given by the formula of the quadratic equation which is given by:
$x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$.
Recently Updated Pages
Questions & Answers - Ask your doubts

A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Two Planoconcave lenses 1 and 2 of glass of refractive class 12 physics CBSE

The compound 2 methyl 2 butene on reaction with NaIO4 class 12 chemistry CBSE

Trending doubts
Which places in India experience sunrise first and class 9 social science CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Write the 6 fundamental rights of India and explain in detail

Difference Between Plant Cell and Animal Cell

What is the Full Form of ISI and RAW

Golden Revolution is related to AFood production BOil class 9 social science CBSE

