
How do you factor ${x^4} + 2{x^3}y - 3{x^2}{y^2} - 4x{y^3} - {y^4}$?
Answer
452.7k+ views
Hint: This problem deals with factoring the given expression which is a polynomial of degree four. This polynomial is an expression with two variables \[x\] and \[y\]. We have to factorize the given expression in such a way that with its zeroes. So here first we factorize the four-degree polynomial into two degree polynomials and then factorize further.
Complete step-by-step solution:
The given expression ${x^4} + 2{x^3}y - 3{x^2}{y^2} - 4x{y^3} - {y^4}$ is equated to zero, as considered below:
$ \Rightarrow {x^4} + 2{x^3}y - 3{x^2}{y^2} - 4x{y^3} - {y^4} = 0$
First solving the equation with only $x$ terms as shown below, that is by considering the $y$ terms as 1.
$ \Rightarrow {x^4} + 2{x^3} - 3{x^2} - 4x - 1 = 0$
$ \Rightarrow \left( {{x^2} - x - 1} \right)\left( {{x^2} + 3x + 1} \right) = 0$
Here equating both the expressions to zero, as shown below to obtain the factors of $x$.
\[ \Rightarrow \left( {{x^2} - x - 1} \right) = 0\]
Now to find the roots of $x$ by using the formula of quadratic roots formula:
\[ \Rightarrow x = \dfrac{{ - \left( { - 1} \right) \pm \sqrt {{{\left( { - 1} \right)}^2} - 4\left( 1 \right)\left( { - 1} \right)} }}{{2\left( 1 \right)}}\]
\[ \Rightarrow x = \dfrac{{1 \pm \sqrt {1 + 5} }}{2}\]
Now the second expression is equated as shown below:
\[ \Rightarrow \left( {{x^2} + 3x + 1} \right) = 0\]
$ \Rightarrow x = \dfrac{{ - 3 \pm \sqrt {{3^2} - 4\left( 1 \right)\left( 1 \right)} }}{{2\left( 1 \right)}}$
On simplifying the expression as shown below:
$ \Rightarrow x = \dfrac{{ - 3 \pm \sqrt 5 }}{2}$
Now factoring the expression ${x^4} + 2{x^3}y - 3{x^2}{y^2} - 4x{y^3} - {y^4}$ with the $y$ terms:
$ \Rightarrow {x^4} + 2{x^3}y - 3{x^2}{y^2} - 4x{y^3} - {y^4} = 0$
$ \Rightarrow \left( {{x^2} - xy - {y^2}} \right)\left( {{x^2} + 3xy + {y^2}} \right) = 0$
We know that the roots of $\left( {{x^2} - x - 1} \right) = 0$ are \[\dfrac{{1 \pm \sqrt {1 + 5} }}{2}\] , so the roots of the expression $\left( {{x^2} - xy - {y^2}} \right) = 0$ are equal to \[\dfrac{{1 \pm \sqrt {1 + 5} }}{2}y\].
Similarly the roots of the expression $\left( {{x^2} + 3xy + {y^2}} \right) = 0$ are equal to $\dfrac{{ - 3 \pm \sqrt 5 }}{2}y$.
$ \Rightarrow \left( {{x^2} - xy - {y^2}} \right)\left( {{x^2} + 3xy + {y^2}} \right) = 0$
$ \Rightarrow \left( {x - \dfrac{{1 + \sqrt {1 + 5} }}{2}y} \right)\left( {x - \dfrac{{1 - \sqrt {1 + 5} }}{2}y} \right)\left( {x - \dfrac{{ - 3 + \sqrt 5 }}{2}y} \right)\left( {x - \dfrac{{ - 3 - \sqrt 5 }}{2}y} \right) = 0$
Note: Please note that this problem deals with factoring the expression with the help of the roots of the quadratic equation formula. If the quadratic equation is expressed in the form of \[a{x^2} + bx + c = 0\], then the roots of the quadratic equation are given by the formula of the quadratic equation which is given by:
$x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$.
Complete step-by-step solution:
The given expression ${x^4} + 2{x^3}y - 3{x^2}{y^2} - 4x{y^3} - {y^4}$ is equated to zero, as considered below:
$ \Rightarrow {x^4} + 2{x^3}y - 3{x^2}{y^2} - 4x{y^3} - {y^4} = 0$
First solving the equation with only $x$ terms as shown below, that is by considering the $y$ terms as 1.
$ \Rightarrow {x^4} + 2{x^3} - 3{x^2} - 4x - 1 = 0$
$ \Rightarrow \left( {{x^2} - x - 1} \right)\left( {{x^2} + 3x + 1} \right) = 0$
Here equating both the expressions to zero, as shown below to obtain the factors of $x$.
\[ \Rightarrow \left( {{x^2} - x - 1} \right) = 0\]
Now to find the roots of $x$ by using the formula of quadratic roots formula:
\[ \Rightarrow x = \dfrac{{ - \left( { - 1} \right) \pm \sqrt {{{\left( { - 1} \right)}^2} - 4\left( 1 \right)\left( { - 1} \right)} }}{{2\left( 1 \right)}}\]
\[ \Rightarrow x = \dfrac{{1 \pm \sqrt {1 + 5} }}{2}\]
Now the second expression is equated as shown below:
\[ \Rightarrow \left( {{x^2} + 3x + 1} \right) = 0\]
$ \Rightarrow x = \dfrac{{ - 3 \pm \sqrt {{3^2} - 4\left( 1 \right)\left( 1 \right)} }}{{2\left( 1 \right)}}$
On simplifying the expression as shown below:
$ \Rightarrow x = \dfrac{{ - 3 \pm \sqrt 5 }}{2}$
Now factoring the expression ${x^4} + 2{x^3}y - 3{x^2}{y^2} - 4x{y^3} - {y^4}$ with the $y$ terms:
$ \Rightarrow {x^4} + 2{x^3}y - 3{x^2}{y^2} - 4x{y^3} - {y^4} = 0$
$ \Rightarrow \left( {{x^2} - xy - {y^2}} \right)\left( {{x^2} + 3xy + {y^2}} \right) = 0$
We know that the roots of $\left( {{x^2} - x - 1} \right) = 0$ are \[\dfrac{{1 \pm \sqrt {1 + 5} }}{2}\] , so the roots of the expression $\left( {{x^2} - xy - {y^2}} \right) = 0$ are equal to \[\dfrac{{1 \pm \sqrt {1 + 5} }}{2}y\].
Similarly the roots of the expression $\left( {{x^2} + 3xy + {y^2}} \right) = 0$ are equal to $\dfrac{{ - 3 \pm \sqrt 5 }}{2}y$.
$ \Rightarrow \left( {{x^2} - xy - {y^2}} \right)\left( {{x^2} + 3xy + {y^2}} \right) = 0$
$ \Rightarrow \left( {x - \dfrac{{1 + \sqrt {1 + 5} }}{2}y} \right)\left( {x - \dfrac{{1 - \sqrt {1 + 5} }}{2}y} \right)\left( {x - \dfrac{{ - 3 + \sqrt 5 }}{2}y} \right)\left( {x - \dfrac{{ - 3 - \sqrt 5 }}{2}y} \right) = 0$
Note: Please note that this problem deals with factoring the expression with the help of the roots of the quadratic equation formula. If the quadratic equation is expressed in the form of \[a{x^2} + bx + c = 0\], then the roots of the quadratic equation are given by the formula of the quadratic equation which is given by:
$x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

The first successful textile mill was established in class 9 social science CBSE

Given that HCF 306 657 9 find the LCM 306 657 class 9 maths CBSE

The highest mountain peak in India is A Kanchenjunga class 9 social science CBSE

A piece of wire 20 cm long is bent into the form of class 9 maths CBSE

Difference Between Plant Cell and Animal Cell
