Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

How do you factor by grouping ${x^3} - {x^2} - x + 1$.

seo-qna
Last updated date: 13th Jul 2024
Total views: 449.7k
Views today: 13.49k
Answer
VerifiedVerified
449.7k+ views
Hint: Factoring by grouping means that we have to group terms with common factors before factoring. This can be done by grouping a pair of terms and then factor each pair of two terms.

Given expression is ${x^3} - {x^2} - x + 1$

We can write the above polynomial as ${x^2}(x - 1) - 1(x - 1)$
$ \Rightarrow (x - 1)({x^2} - 1)$ $\because \left[ {{a^2} - {b^2} = (a + b)(a - b)} \right]$
$ \Rightarrow (x - 1)(x - 1)(x + 1)$
$\therefore {x^3} - {x^2} - x + 1$ can be factorized into ${\left( {x - 1} \right)^2}(x + 1)$

Note:
Here we grouped the first two terms together and then the last two terms together. Later we took out the common term from each expression. Then factor out the common binomial.