
How do you factor and solve $ - {x^2} - 2x + 3?$
Answer
540.3k+ views
Hint: As we know that factorising is the reverse of expanding brackets, it is an important way of solving equations. The first step of factoring an expression is to take out any common factors which the terms have. So if we were asked to factor the expression ${x^2} + x$ , since $x$ goes into both terms, we would write $x(x + 1)$. We know that for the factorisation of quadratic polynomials of the form ${x^2} + bx + c$we have to find numbers $p$and $q$such that $p + q = b$ and $pq = c$. This is called factorisation by splitting the middle term.
Complete step-by-step solution:
Here we have an equation: $ - {x^2} - 2x + 3$ .
We will change the sign of the equation i.e. by multiplying the whole equation is negative sign: $ - ( - {x^2} - 2x + 3) = 0$, we get new equation which is ${x^2} + 2x - 3 = 0$.So we have to split the middle term i.e. $(2x)$in such numbers that that the product of the numbers will be equal to $( - 3{x^2})$. We can write $2x = 3x - x$ and $(3x)( - x) = - 3{x^2}$.
Therefore ${x^2} + 2x - 3 = {x^2} + 3x - x - 3$, Now take out the common factor and simplify it;
$x(x + 3) - 1(x + 3) = 0 \Rightarrow (x + 3)(x - 1)$.This is the simplest factor of the given quadratic equation. Now we have $(x + 3) = 0$or $(x - 1) = 0$. So we get two values of $x$ i.e. $x = - 3$ and $x = 1$.
Hence the factors of $ - {x^2} - 2x + 3 = 0$ is and the values of $x$are $ - 3$or $1$.
Note: We should keep in mind while solving this kind of middle term factorisation that we use correct identities to factorise the given algebraic expressions and keep checking the negative and positive sign otherwise it will give the wrong answer. Also we should always check for the sum and product and also verify the factors by multiplying that as it will provide the same above quadratic equation or not. These are some of the standard algebraic identities. This is as far we can go with real coefficients as the remaining quadratic factors all have complex zeros.
Complete step-by-step solution:
Here we have an equation: $ - {x^2} - 2x + 3$ .
We will change the sign of the equation i.e. by multiplying the whole equation is negative sign: $ - ( - {x^2} - 2x + 3) = 0$, we get new equation which is ${x^2} + 2x - 3 = 0$.So we have to split the middle term i.e. $(2x)$in such numbers that that the product of the numbers will be equal to $( - 3{x^2})$. We can write $2x = 3x - x$ and $(3x)( - x) = - 3{x^2}$.
Therefore ${x^2} + 2x - 3 = {x^2} + 3x - x - 3$, Now take out the common factor and simplify it;
$x(x + 3) - 1(x + 3) = 0 \Rightarrow (x + 3)(x - 1)$.This is the simplest factor of the given quadratic equation. Now we have $(x + 3) = 0$or $(x - 1) = 0$. So we get two values of $x$ i.e. $x = - 3$ and $x = 1$.
Hence the factors of $ - {x^2} - 2x + 3 = 0$ is and the values of $x$are $ - 3$or $1$.
Note: We should keep in mind while solving this kind of middle term factorisation that we use correct identities to factorise the given algebraic expressions and keep checking the negative and positive sign otherwise it will give the wrong answer. Also we should always check for the sum and product and also verify the factors by multiplying that as it will provide the same above quadratic equation or not. These are some of the standard algebraic identities. This is as far we can go with real coefficients as the remaining quadratic factors all have complex zeros.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

